Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 21
Filtrer
2.
Mol Cell ; 83(20): 3659-3668.e10, 2023 10 19.
Article de Anglais | MEDLINE | ID: mdl-37832547

RÉSUMÉ

The integrity of the nuclear envelope (NE) is essential for maintaining the structural stability of the nucleus. Rupture of the NE has been frequently observed in cancer cells, especially in the context of mechanical challenges, such as physical confinement and migration. However, spontaneous NE rupture events, without any obvious physical challenges to the cell, have also been described. The molecular mechanism(s) of these spontaneous NE rupture events remain to be explored. Here, we show that DNA damage and subsequent ATR activation leads to NE rupture. Upon DNA damage, lamin A/C is phosphorylated in an ATR-dependent manner, leading to changes in lamina assembly and, ultimately, NE rupture. In addition, we show that cancer cells with intrinsic DNA repair defects undergo frequent events of DNA-damage-induced NE rupture, which renders them extremely sensitive to further NE perturbations. Exploiting this NE vulnerability could provide a new angle to complement traditional, DNA-damage-based chemotherapy.


Sujet(s)
Lamine A , Enveloppe nucléaire , Enveloppe nucléaire/métabolisme , Lamine A/génétique , Lamine A/métabolisme , Phosphorylation , Altération de l'ADN , ADN/métabolisme , Noyau de la cellule/métabolisme
3.
Nature ; 621(7978): 415-422, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37674080

RÉSUMÉ

DNA double-strand breaks (DSBs) are deleterious lesions that challenge genome integrity. To mitigate this threat, human cells rely on the activity of multiple DNA repair machineries that are tightly regulated throughout the cell cycle1. In interphase, DSBs are mainly repaired by non-homologous end joining and homologous recombination2. However, these pathways are completely inhibited in mitosis3-5, leaving the fate of mitotic DSBs unknown. Here we show that DNA polymerase theta6 (Polθ) repairs mitotic DSBs and thereby maintains genome integrity. In contrast to other DSB repair factors, Polθ function is activated in mitosis upon phosphorylation by Polo-like kinase 1 (PLK1). Phosphorylated Polθ is recruited by a direct interaction with the BRCA1 C-terminal domains of TOPBP1 to mitotic DSBs, where it mediates joining of broken DNA ends. Loss of Polθ leads to defective repair of mitotic DSBs, resulting in a loss of genome integrity. This is further exacerbated in cells that are deficient in homologous recombination, where loss of mitotic DSB repair by Polθ results in cell death. Our results identify mitotic DSB repair as the underlying cause of synthetic lethality between Polθ and homologous recombination. Together, our findings reveal the critical importance of mitotic DSB repair in the maintenance of genome integrity.


Sujet(s)
Cassures double-brin de l'ADN , Réparation de l'ADN , DNA-directed DNA polymerase , Mitose , Protein-Serine-Threonine Kinases , Humains , Protéine BRCA1/métabolisme , Protéines du cycle cellulaire/métabolisme , Mort cellulaire/génétique , DNA-directed DNA polymerase/composition chimique , DNA-directed DNA polymerase/métabolisme , Recombinaison homologue/génétique , Phosphorylation , Protein-Serine-Threonine Kinases/métabolisme , Mutations synthétiques létales , ,
4.
Nucleic Acids Res ; 51(15): 7988-8004, 2023 08 25.
Article de Anglais | MEDLINE | ID: mdl-37395445

RÉSUMÉ

Fanconi anemia (FA) is a genetic disorder associated with developmental defects, bone marrow failure and cancer. The FA pathway is crucial for the repair of DNA interstrand crosslinks (ICLs). In this study, we have developed and characterized a new tool to investigate ICL repair: a clickable version of the crosslinking agent melphalan which we name click-melphalan. Our results demonstrate that click-melphalan is as effective as its unmodified counterpart in generating ICLs and associated toxicity. The lesions induced by click-melphalan can be detected in cells by post-labelling with a fluorescent reporter and quantified using flow cytometry. Since click-melphalan induces both ICLs and monoadducts, we generated click-mono-melphalan, which only induces monoadducts, in order to distinguish between the two types of DNA repair. By using both molecules, we show that FANCD2 knock-out cells are deficient in removing click-melphalan-induced lesions. We also found that these cells display a delay in repairing click-mono-melphalan-induced monoadducts. Our data further revealed that the presence of unrepaired ICLs inhibits monoadduct repair. Finally, our study demonstrates that these clickable molecules can differentiate intrinsic DNA repair deficiencies in primary FA patient cells from those in primary xeroderma pigmentosum patient cells. As such, these molecules may have potential for developing diagnostic tests.


Sujet(s)
Anémie de Fanconi , Melphalan , Humains , Melphalan/pharmacologie , Anémie de Fanconi/anatomopathologie , Réparation de l'ADN , Altération de l'ADN , ADN
5.
Nat Cancer ; 2(6): 598-610, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-34179826

RÉSUMÉ

DNA polymerase theta (POLθ) is synthetic lethal with Homologous Recombination (HR) deficiency and thus a candidate target for HR-deficient cancers. Through high-throughput small molecule screens we identified the antibiotic Novobiocin (NVB) as a specific POLθ inhibitor that selectively kills HR-deficient tumor cells in vitro and in vivo. NVB directly binds to the POLθ ATPase domain, inhibits its ATPase activity, and phenocopies POLθ depletion. NVB kills HR-deficient breast and ovarian tumors in GEMM, xenograft and PDX models. Increased POLθ levels predict NVB sensitivity, and BRCA-deficient tumor cells with acquired resistance to PARP inhibitors (PARPi) are sensitive to NVB in vitro and in vivo. Mechanistically, NVB-mediated cell death in PARPi-resistant cells arises from increased double-strand break end resection, leading to accumulation of single-strand DNA intermediates and non-functional RAD51 foci. Our results demonstrate that NVB may be useful alone or in combination with PARPi in treating HR-deficient tumors, including those with acquired PARPi resistance. (151/150).


Sujet(s)
Recombinaison homologue , Tumeurs de l'ovaire , Adenosine triphosphatases/génétique , Femelle , Recombinaison homologue/génétique , Humains , Tumeurs de l'ovaire/traitement médicamenteux , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacologie
6.
Mol Cell ; 72(3): 568-582.e6, 2018 11 01.
Article de Anglais | MEDLINE | ID: mdl-30344097

RÉSUMÉ

Protecting stalled DNA replication forks from degradation by promiscuous nucleases is essential to prevent genomic instability, a major driving force of tumorigenesis. Several proteins commonly associated with the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) have been implicated in the stabilization of stalled forks. Human CtIP, in conjunction with the MRE11 nuclease complex, plays an important role in HR by promoting DSB resection. Here, we report an unanticipated function for CtIP in protecting reversed forks from degradation. Unlike BRCA proteins, which defend nascent DNA strands from nucleolytic attack by MRE11, we find that CtIP protects perturbed forks from erroneous over-resection by DNA2. Finally, we uncover functionally synergistic effects between CtIP and BRCA1 in mitigating replication-stress-induced genomic instability. Collectively, our findings reveal a DSB-resection- and MRE11-independent role for CtIP in preserving fork integrity that contributes to the survival of BRCA1-deficient cells.


Sujet(s)
Protéines de transport/métabolisme , Protéines de transport/physiologie , Réplication de l'ADN/physiologie , Protéines nucléaires/métabolisme , Protéines nucléaires/physiologie , Protéine BRCA1 , Protéine BRCA2 , Lignée cellulaire , Cassures double-brin de l'ADN , Helicase/physiologie , Réparation de l'ADN , Protéines de liaison à l'ADN , Désoxyribonucléases , Endodeoxyribonucleases , Instabilité du génome/physiologie , Recombinaison homologue/génétique , Humains , Protéine homologue de MRE11/métabolisme , Liaison aux protéines
7.
Nat Cell Biol ; 19(11): 1371-1378, 2017 Nov.
Article de Anglais | MEDLINE | ID: mdl-29035360

RÉSUMÉ

The emergence of resistance to poly-ADP-ribose polymerase inhibitors (PARPi) poses a threat to the treatment of BRCA1 and BRCA2 (BRCA1/2)-deficient tumours. Stabilization of stalled DNA replication forks is a recently identified PARPi-resistance mechanism that promotes genomic stability in BRCA1/2-deficient cancers. Dissecting the molecular pathways controlling genomic stability at stalled forks is critical. Here we show that EZH2 localizes at stalled forks where it methylates Lys27 on histone 3 (H3K27me3), mediating recruitment of the MUS81 nuclease. Low EZH2 levels reduce H3K27 methylation, prevent MUS81 recruitment at stalled forks and cause fork stabilization. As a consequence, loss of function of the EZH2/MUS81 axis promotes PARPi resistance in BRCA2-deficient cells. Accordingly, low EZH2 or MUS81 expression levels predict chemoresistance and poor outcome in patients with BRCA2-mutated tumours. Moreover, inhibition of Ezh2 in a murine Brca2-/- breast tumour model is associated with acquired PARPi resistance. Our findings identify EZH2 as a critical regulator of genomic stability at stalled forks that couples histone modifications to nuclease recruitment. Our data identify EZH2 expression as a biomarker of BRCA2-deficient tumour response to chemotherapy.


Sujet(s)
Réplication de l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Endonucleases/métabolisme , Protéine-2 homologue de l'activateur de Zeste/métabolisme , Histone/métabolisme , Animaux , Protéine BRCA1/métabolisme , Protéine BRCA2/métabolisme , Marqueurs biologiques tumoraux/métabolisme , Tumeurs du sein/génétique , Tumeurs du sein/métabolisme , Lignée cellulaire , Lignée cellulaire tumorale , Réplication de l'ADN/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/génétique , Femelle , Instabilité du génome/effets des médicaments et des substances chimiques , Instabilité du génome/génétique , Cellules HEK293 , Cellules HeLa , Humains , Méthylation/effets des médicaments et des substances chimiques , Souris , Souris nude , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacologie
9.
J Clin Invest ; 126(9): 3580-4, 2016 09 01.
Article de Anglais | MEDLINE | ID: mdl-27500492

RÉSUMÉ

Fanconi anemia (FA) is a recessive genetic disease characterized by congenital abnormalities, chromosome instability, progressive bone marrow failure (BMF), and a strong predisposition to cancer. Twenty FA genes have been identified, and the FANC proteins they encode cooperate in a common pathway that regulates DNA crosslink repair and replication fork stability. We identified a child with severe BMF who harbored biallelic inactivating mutations of the translesion DNA synthesis (TLS) gene REV7 (also known as MAD2L2), which encodes the mutant REV7 protein REV7-V85E. Patient-derived cells demonstrated an extended FA phenotype, which included increased chromosome breaks and G2/M accumulation upon exposure to DNA crosslinking agents, γH2AX and 53BP1 foci accumulation, and enhanced p53/p21 activation relative to cells derived from healthy patients. Expression of WT REV7 restored normal cellular and functional phenotypes in the patient's cells, and CRISPR/Cas9 inactivation of REV7 in a non-FA human cell line produced an FA phenotype. Finally, silencing Rev7 in primary hematopoietic cells impaired progenitor function, suggesting that the DNA repair defect underlies the development of BMF in FA. Taken together, our genetic and functional analyses identified REV7 as a previously undescribed FA gene, which we term FANCV.


Sujet(s)
Anémie de Fanconi/génétique , Protéines Mad2/génétique , Mutation , Allèles , Animaux , Cycle cellulaire , Lignée cellulaire tumorale , Enfant , Instabilité des chromosomes , Cassure de chromosome , Études de cohortes , Réactifs réticulants/composition chimique , Altération de l'ADN , Réparation de l'ADN , Femelle , Fibroblastes/métabolisme , Extinction de l'expression des gènes , Test de complémentation , Prédisposition génétique à une maladie , Variation génétique , Cellules souches hématopoïétiques/cytologie , Humains , Lentivirus , Protéines Mad2/métabolisme , Mâle , Souris , Souris knockout , Mitose , Phénotype
10.
Cell Rep ; 15(11): 2488-99, 2016 06 14.
Article de Anglais | MEDLINE | ID: mdl-27264184

RÉSUMÉ

BRCA1/2 proteins function in homologous recombination (HR)-mediated DNA repair and cooperate with Fanconi anemia (FA) proteins to maintain genomic integrity through replication fork stabilization. Loss of BRCA1/2 proteins results in DNA repair deficiency and replicative stress, leading to genomic instability and enhanced sensitivity to DNA-damaging agents. Recent studies have shown that BRCA1/2-deficient tumors upregulate Polθ-mediated alternative end-joining (alt-EJ) repair as a survival mechanism. Whether other mechanisms maintain genomic integrity upon loss of BRCA1/2 proteins is currently unknown. Here we show that BRCA1/2-deficient tumors also upregulate FANCD2 activity. FANCD2 is required for fork protection and fork restart in BRCA1/2-deficient tumors. Moreover, FANCD2 promotes Polθ recruitment at sites of damage and alt-EJ repair. Finally, loss of FANCD2 in BRCA1/2-deficient tumors enhances cell death. These results reveal a synthetic lethal relationship between FANCD2 and BRCA1/2, and they identify FANCD2 as a central player orchestrating DNA repair pathway choice at the replication fork.


Sujet(s)
Protéine BRCA1/déficit , Protéine BRCA2/déficit , Réparation de l'ADN par jonction d'extrémités , Réplication de l'ADN , Protéine du groupe de complémentation D2 de l'anémie de Fanconi/métabolisme , Tumeurs/génétique , Tumeurs/anatomopathologie , Animaux , Protéine BRCA1/métabolisme , Protéine BRCA2/métabolisme , Protéines de transport/métabolisme , Lignée cellulaire tumorale , Survie cellulaire , Réparation de l'ADN par jonction d'extrémités/génétique , Réplication de l'ADN/génétique , DNA-directed DNA polymerase/métabolisme , Endodeoxyribonucleases , Instabilité du génome , Humains , Souris nude , Mutation/génétique , Protéines nucléaires/métabolisme , Poly(ADP-ribose) polymerases/métabolisme , Ubiquitination , Régulation positive/génétique ,
11.
Nat Rev Mol Cell Biol ; 17(6): 337-49, 2016 06.
Article de Anglais | MEDLINE | ID: mdl-27145721

RÉSUMÉ

The Fanconi anaemia pathway repairs DNA interstrand crosslinks (ICLs) in the genome. Our understanding of this complex pathway is still evolving, as new components continue to be identified and new biochemical systems are used to elucidate the molecular steps of repair. The Fanconi anaemia pathway uses components of other known DNA repair processes to achieve proper repair of ICLs. Moreover, Fanconi anaemia proteins have functions in genome maintenance beyond their canonical roles of repairing ICLs. Such functions include the stabilization of replication forks and the regulation of cytokinesis. Thus, Fanconi anaemia proteins are emerging as master regulators of genomic integrity that coordinate several repair processes. Here, we summarize our current understanding of the functions of the Fanconi anaemia pathway in ICL repair, together with an overview of its connections with other repair pathways and its emerging roles in genome maintenance.


Sujet(s)
Réparation de l'ADN , Protéines des groupes de complémentation de l'anémie de Fanconi/physiologie , Anémie de Fanconi/génétique , Animaux , Altération de l'ADN , Réplication de l'ADN , Humains
12.
Trends Cell Biol ; 26(1): 52-64, 2016 Jan.
Article de Anglais | MEDLINE | ID: mdl-26437586

RÉSUMÉ

DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transformation due to chromosomal translocations. Typically, cells employ two main mechanisms to repair DSBs: homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). In addition, alternative error-prone DSB repair pathways, namely alternative end joining (alt-EJ) and single-strand annealing (SSA), have been recently shown to operate in many different conditions and to contribute to genome rearrangements and oncogenic transformation. Here, we review the mechanisms regulating DSB repair pathway choice, together with the potential interconnections between HR and the annealing-dependent error-prone DSB repair pathways.


Sujet(s)
Cassures double-brin de l'ADN , Réparation de l'ADN , Animaux , Survie cellulaire , Instabilité du génome , Humains , Mutation
13.
Cancer Discov ; 5(11): 1137-54, 2015 Nov.
Article de Anglais | MEDLINE | ID: mdl-26463832

RÉSUMÉ

UNLABELLED: Approximately 50% of epithelial ovarian cancers (EOC) exhibit defective DNA repair via homologous recombination (HR) due to genetic and epigenetic alterations of HR pathway genes. Defective HR is an important therapeutic target in EOC as exemplified by the efficacy of platinum analogues in this disease, as well as the advent of PARP inhibitors, which exhibit synthetic lethality when applied to HR-deficient cells. Here, we describe the genotypic and phenotypic characteristics of HR-deficient EOCs, discuss current and emerging approaches for targeting these tumors, and present challenges associated with these approaches, focusing on development and overcoming resistance. SIGNIFICANCE: Defective DNA repair via HR is a pivotal vulnerability of EOC, particularly of the high-grade serous histologic subtype. Targeting defective HR offers the unique opportunity of exploiting molecular differences between tumor and normal cells, thereby inducing cancer-specific synthetic lethality; the promise and challenges of these approaches in ovarian cancer are discussed in this review.


Sujet(s)
Recombinaison homologue , Tumeurs de l'ovaire/génétique , Animaux , Protocoles de polychimiothérapie antinéoplasique/usage thérapeutique , Marqueurs biologiques , Carcinome épithélial de l'ovaire , Essais cliniques comme sujet , Réparation de l'ADN , Résistance aux médicaments antinéoplasiques/génétique , Femelle , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Variation génétique , Humains , Thérapie moléculaire ciblée , Tumeurs épithéliales épidermoïdes et glandulaires/génétique , Tumeurs épithéliales épidermoïdes et glandulaires/métabolisme , Tumeurs épithéliales épidermoïdes et glandulaires/anatomopathologie , Tumeurs de l'ovaire/traitement médicamenteux , Tumeurs de l'ovaire/métabolisme , Tumeurs de l'ovaire/anatomopathologie , Phénotype , Transduction du signal/effets des médicaments et des substances chimiques , Résultat thérapeutique
14.
Nature ; 518(7538): 258-62, 2015 Feb 12.
Article de Anglais | MEDLINE | ID: mdl-25642963

RÉSUMÉ

Large-scale genomic studies have shown that half of epithelial ovarian cancers (EOCs) have alterations in genes regulating homologous recombination (HR) repair. Loss of HR accounts for the genomic instability of EOCs and for their cellular hyper-dependence on alternative poly-ADP ribose polymerase (PARP)-mediated DNA repair mechanisms. Previous studies have implicated the DNA polymerase θ (Polθ also known as POLQ, encoded by POLQ) in a pathway required for the repair of DNA double-strand breaks, referred to as the error-prone microhomology-mediated end-joining (MMEJ) pathway. Whether Polθ interacts with canonical DNA repair pathways to prevent genomic instability remains unknown. Here we report an inverse correlation between HR activity and Polθ expression in EOCs. Knockdown of Polθ in HR-proficient cells upregulates HR activity and RAD51 nucleofilament assembly, while knockdown of Polθ in HR-deficient EOCs enhances cell death. Consistent with these results, genetic inactivation of an HR gene (Fancd2) and Polq in mice results in embryonic lethality. Moreover, Polθ contains RAD51 binding motifs and it blocks RAD51-mediated recombination. Our results reveal a synthetic lethal relationship between the HR pathway and Polθ-mediated repair in EOCs, and identify Polθ as a novel druggable target for cancer therapy.


Sujet(s)
Cassures double-brin de l'ADN , Réparation de l'ADN par jonction d'extrémités , DNA-directed DNA polymerase/métabolisme , Recombinaison homologue , Tumeurs épithéliales épidermoïdes et glandulaires/génétique , Tumeurs épithéliales épidermoïdes et glandulaires/métabolisme , Tumeurs de l'ovaire/génétique , Tumeurs de l'ovaire/métabolisme , Motifs d'acides aminés , Animaux , Carcinome épithélial de l'ovaire , Cycle cellulaire , Mort cellulaire , Lignée cellulaire tumorale , Réparation de l'ADN par jonction d'extrémités/génétique , Réplication de l'ADN , DNA-directed DNA polymerase/déficit , Perte de l'embryon , Protéine du groupe de complémentation D2 de l'anémie de Fanconi/déficit , Protéine du groupe de complémentation D2 de l'anémie de Fanconi/génétique , Femelle , Instabilité du génome , Recombinaison homologue/génétique , Humains , Souris , Thérapie moléculaire ciblée , Tumeurs épithéliales épidermoïdes et glandulaires/anatomopathologie , Tumeurs de l'ovaire/anatomopathologie , Liaison aux protéines , Rad51 Recombinase/antagonistes et inhibiteurs , Rad51 Recombinase/métabolisme , Réparation de l'ADN par recombinaison/génétique ,
15.
Cancer Res ; 75(4): 628-34, 2015 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-25634215

RÉSUMÉ

Platinum and PARP inhibitor (PARPi) sensitivity commonly coexist in epithelial ovarian cancer (EOC) due to the high prevalence of alterations in the homologous recombination (HR) DNA repair pathway that confer sensitivity to both drugs. In this report, we describe a unique subset of EOC with alterations in another DNA repair pathway, the nucleotide excision repair (NER) pathway, which may exhibit a discordance in sensitivities to these drugs. Specifically, 8% of high-grade serous EOC from The Cancer Genome Atlas dataset exhibited NER alterations, including nonsynonymous or splice site mutations and homozygous deletions of NER genes. Tumors with NER alterations were associated with improved overall survival (OS) and progression-free survival (PFS), compared with patients without NER alterations or BRCA1/2 mutations. Furthermore, patients with tumors with NER alterations had similar OS and PFS as BRCA1/2-mutated patients, suggesting that NER pathway inactivation in EOC conferred enhanced platinum sensitivity, similar to BRCA1/2-mutated tumors. Moreover, two NER mutations (ERCC6-Q524* and ERCC4-A583T), identified in the two most platinum-sensitive tumors, were functionally associated with platinum sensitivity in vitro. Importantly, neither NER alteration affected HR or conferred sensitivity to PARPi or other double-strand break-inducing agents. Overall, our findings reveal a new mechanism of platinum sensitivity in EOC that, unlike defective HR, may lead to a discordance in sensitivity to platinum and PARPi, with potential implications for previously reported and ongoing PARPi trials in this disease.


Sujet(s)
Réparation de l'ADN/génétique , Résistance aux médicaments antinéoplasiques/génétique , Tumeurs épithéliales épidermoïdes et glandulaires/traitement médicamenteux , Tumeurs épithéliales épidermoïdes et glandulaires/génétique , Tumeurs de l'ovaire/traitement médicamenteux , Tumeurs de l'ovaire/génétique , Poly(ADP-ribose) polymerases/génétique , Protéine BRCA1/génétique , Protéine BRCA2/génétique , Carboplatine/administration et posologie , Carcinome épithélial de l'ovaire , Cisplatine/administration et posologie , Cassures double-brin de l'ADN/effets des médicaments et des substances chimiques , Survie sans rechute , Antienzymes/administration et posologie , Femelle , Humains , Tumeurs épithéliales épidermoïdes et glandulaires/anatomopathologie , Tumeurs de l'ovaire/anatomopathologie , Inhibiteurs de poly(ADP-ribose) polymérases
16.
Mol Cell ; 54(1): 107-118, 2014 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-24657165

RÉSUMÉ

Timely DNA replication across damaged DNA is critical for maintaining genomic integrity. Translesion DNA synthesis (TLS) allows bypass of DNA lesions using error-prone TLS polymerases. The E3 ligase RAD18 is necessary for proliferating cell nuclear antigen (PCNA) monoubiquitination and TLS polymerase recruitment; however, the regulatory steps upstream of RAD18 activation are less understood. Here, we show that the UBZ4 domain-containing transcriptional repressor ZBTB1 is a critical upstream regulator of TLS. The UBZ4 motif is required for PCNA monoubiquitination and survival after UV damage. ZBTB1 associates with KAP-1, a transcriptional repressor whose phosphorylation relaxes chromatin after DNA damage. ZBTB1 depletion impairs formation of phospho-KAP-1 at UV damage sites and reduces RAD18 recruitment. Furthermore, phosphorylation of KAP-1 is necessary for efficient PCNA modification. We propose that ZBTB1 is required for localizing phospho-KAP-1 to chromatin and enhancing RAD18 accessibility. Collectively, our study implicates a ubiquitin-binding protein in orchestrating chromatin remodeling during DNA repair.


Sujet(s)
Noyau de la cellule/métabolisme , Assemblage et désassemblage de la chromatine , Altération de l'ADN , Réplication de l'ADN , ADN/biosynthèse , Protéines de répression/métabolisme , Animaux , Sites de fixation , Noyau de la cellule/effets des médicaments et des substances chimiques , Noyau de la cellule/effets des radiations , Survie cellulaire , Poulets , Protéines de liaison à l'ADN/métabolisme , DNA-directed DNA polymerase/métabolisme , Antienzymes/pharmacologie , Cellules HEK293 , Cellules HeLa , Humains , Inhibiteurs de la synthèse d'acide nucléique , Phosphorylation , Antigène nucléaire de prolifération cellulaire/métabolisme , Interférence par ARN , Protéines de répression/génétique , Transduction du signal , Facteurs temps , Transfection , Protéine-28 à motif tripartite , Ubiquitin-protein ligases , Ubiquitination , Rayons ultraviolets
17.
PLoS One ; 8(7): e69293, 2013.
Article de Anglais | MEDLINE | ID: mdl-23935976

RÉSUMÉ

Gaucher disease (GD) is an autosomal recessive disorder characterized by lysosomal glucocerebrosidase (GBA) deficiency leading to hematological and skeletal manifestations. Mechanisms underlying these symptoms have not yet been elucidated. In vivo, bone marrow (BM) mesenchymal stem cells (MSCs) have important role in the regulation of bone mass and in the support of hematopoiesis, thus representing potential candidate that could contribute to the disease. GBA deficiency may also directly impair hematopoietic stem/progenitors cells (HSPCs) intrinsic function and induce hematological defect. In order to evaluate the role of BM stem cells in GD pathophysiology, we prospectively analyzed BM-MSCs and HSPCs properties in a series of 10 patients with type 1 GD. GBA activity was decreased in all tested cell subtypes. GD-MSCs had an impaired growth potential, morphological and cell cycle abnormalities, decreased capacities to differentiate into osteoblasts. Moreover, GD-MSCs secreted soluble factors that stimulated osteoclasts resorbing activities. In vitro and in vivo primitive and mature hematopoiesis were similar between patients and controls. However, GD-MSCs had a lower hematopoietic supportive capacity than those from healthy donors. These data suggest that BM microenvironment is altered in GD and that MSCs are key components of the manifestations observed in GD.


Sujet(s)
Cellules de la moelle osseuse/anatomopathologie , Maladie de Gaucher/anatomopathologie , Glucosylceramidase/déficit , Cellules souches hématopoïétiques/anatomopathologie , Cellules souches mésenchymateuses/anatomopathologie , Ostéoblastes/anatomopathologie , Ostéoclastes/anatomopathologie , Adulte , Sujet âgé , Animaux , Cellules de la moelle osseuse/enzymologie , Études cas-témoins , Différenciation cellulaire , Prolifération cellulaire , Microenvironnement cellulaire , Femelle , Maladie de Gaucher/enzymologie , Cellules souches hématopoïétiques/enzymologie , Humains , Mâle , Cellules souches mésenchymateuses/enzymologie , Souris , Adulte d'âge moyen , Études prospectives
18.
Cell Stem Cell ; 11(1): 36-49, 2012 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-22683204

RÉSUMÉ

Fanconi anemia (FA) is an inherited DNA repair deficiency syndrome. FA patients undergo progressive bone marrow failure (BMF) during childhood, which frequently requires allogeneic hematopoietic stem cell transplantation. The pathogenesis of this BMF has been elusive to date. Here we found that FA patients exhibit a profound defect in hematopoietic stem and progenitor cells (HSPCs) that is present before the onset of clinical BMF. In response to replicative stress and unresolved DNA damage, p53 is hyperactivated in FA cells and triggers a late p21(Cdkn1a)-dependent G0/G1 cell-cycle arrest. Knockdown of p53 rescued the HSPC defects observed in several in vitro and in vivo models, including human FA or FA-like cells. Taken together, our results identify an exacerbated p53/p21 "physiological" response to cellular stress and DNA damage accumulation as a central mechanism for progressive HSPC elimination in FA patients, and have implications for clinical care.


Sujet(s)
Moelle osseuse/anatomopathologie , Inhibiteur p21 de kinase cycline-dépendante/métabolisme , Altération de l'ADN , Anémie de Fanconi/métabolisme , Anémie de Fanconi/anatomopathologie , Cellules souches hématopoïétiques/anatomopathologie , Protéine p53 suppresseur de tumeur/métabolisme , Adolescent , Adulte , Cellules souches adultes/métabolisme , Cellules souches adultes/anatomopathologie , Vieillissement/anatomopathologie , Animaux , Moelle osseuse/métabolisme , Enfant , Enfant d'âge préscolaire , Modèles animaux de maladie humaine , Cellules souches embryonnaires/métabolisme , Cellules souches embryonnaires/anatomopathologie , Protéine du groupe de complémentation C de l'anémie de Fanconi/déficit , Protéine du groupe de complémentation C de l'anémie de Fanconi/métabolisme , Protéine du groupe de complémentation D2 de l'anémie de Fanconi/métabolisme , Points de contrôle de la phase G1 du cycle cellulaire , Points de contrôle de la phase G2 du cycle cellulaire , Techniques de knock-down de gènes , Extinction de l'expression des gènes , Cellules souches hématopoïétiques/métabolisme , Humains , Nourrisson , Souris , Adulte d'âge moyen , Phase S
19.
J Thorac Cardiovasc Surg ; 144(2): 467-73, 473.e1-2, 2012 Aug.
Article de Anglais | MEDLINE | ID: mdl-22264418

RÉSUMÉ

OBJECTIVE: Cardiopulmonary bypass remains associated with significant morbidity and mortality, in part caused by a systemic inflammatory response that is unpredictable and variable among patients. Several limited studies have suggested associations of cytokine plasma levels or gene polymorphisms with outcome after cardiopulmonary bypass. The present study was to determine the relationships between several circulating cytokines and their polymorphisms (single nucleotide polymorphisms), and the occurrence of postoperative clinical events in patients who underwent coronary artery bypass grafting under cardiopulmonary bypass. METHODS: Patients were genotyped for single nucleotide polymorphisms of LTA (Cys13Arg, +252A>G), TNF (-308G>A), IL6 (-597G>A, -572G>C, -174G>C), IL10 (-592C>A, c.∗117C>T), and APOE (Cys112Arg, Arg158Cys). Serum samples were collected preoperatively, immediately after cardiopulmonary bypass, and at different postoperative time points to measure cytokine serum levels by enzyme-linked immunosorbent assay. The clinical end point was the composite of postoperative death, low cardiac output syndrome, myocardial infarction, sepsis, and acute renal insufficiency. RESULTS: Single nucleotide polymorphisms IL6-572GC+CC/IL10-592CC were associated with the clinical end point (P=.032 and P=.009, respectively). In addition to preoperative clinical conditions, the other factor associated with the clinical end point was interleukin-10 plasma levels 24 hours after surgery (P=.017). On the basis of these results, a predictive model of postoperative complications after coronary artery bypass grafting was created. CONCLUSIONS: Our data suggest that focused genetic testing of the IL6-572G>C and IL10-592C>A single nucleotide polymorphisms might be a tool for identifying patients at the highest risk of poor tolerance to the inflammatory response to cardiopulmonary bypass and for implementing strategies to mitigate it, provided the generalization of these tests makes them reasonably affordable and thus favorably shifts their cost-to-benefit ratio.


Sujet(s)
Pontage cardiopulmonaire/effets indésirables , Pontage aortocoronarien , Cytokines/sang , Cytokines/génétique , Polymorphisme de nucléotide simple , Atteinte rénale aigüe/épidémiologie , Atteinte rénale aigüe/génétique , Sujet âgé , Bas débit cardiaque/épidémiologie , Bas débit cardiaque/génétique , Test ELISA , Femelle , Génotype , Humains , Mâle , Adulte d'âge moyen , Infarctus du myocarde/épidémiologie , Infarctus du myocarde/génétique , Complications postopératoires/épidémiologie , Complications postopératoires/génétique , Sepsie/épidémiologie , Sepsie/génétique
20.
Blood ; 117(15): e161-70, 2011 Apr 14.
Article de Anglais | MEDLINE | ID: mdl-21325596

RÉSUMÉ

Fanconi anemia (FA) is a genetic condition associated with bone marrow (BM) failure, myelodysplasia (MDS), and acute myeloid leukemia (AML). We studied 57 FA patients with hypoplastic or aplastic anemia (n = 20), MDS (n = 18), AML (n = 11), or no BM abnormality (n = 8). BM samples were analyzed by karyotype, high-density DNA arrays with respect to paired fibroblasts, and by selected oncogene sequencing. A specific pattern of chromosomal abnormalities was found in MDS/AML, which included 1q+ (44.8%), 3q+ (41.4%), -7/7q (17.2%), and 11q- (13.8%). Moreover, cryptic RUNX1/AML1 lesions (translocations, deletions, or mutations) were observed for the first time in FA (20.7%). Rare mutations of NRAS, FLT3-ITD, MLL-PTD, ERG amplification, and ZFP36L2-PRDM16 translocation, but no TP53, TET2, CBL, NPM1, and CEBPα mutations were found. Frequent homozygosity regions were related not to somatic copy-neutral loss of heterozygosity but to consanguinity, suggesting that homologous recombination is not a common progression mechanism in FA. Importantly, the RUNX1 and other chromosomal/genomic lesions were found at the MDS/AML stages, except for 1q+, which was found at all stages. These data have implications for staging and therapeutic managing in FA patients, and also to analyze the mechanisms of clonal evolution and oncogenesis in a background of genomic instability and BM failure.


Sujet(s)
Sous-unité alpha 2 du facteur CBF/génétique , Anémie de Fanconi/génétique , Instabilité du génome/génétique , Leucémie aigüe myéloïde/génétique , Syndromes myélodysplasiques/génétique , Adolescent , Adulte , Moelle osseuse/physiologie , Enfant , Enfant d'âge préscolaire , Anémie de Fanconi/complications , Femelle , Dosage génique/génétique , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes dans la leucémie , Gènes suppresseurs de tumeur , Homozygote , Humains , Leucémie aigüe myéloïde/étiologie , Mâle , Adulte d'âge moyen , Syndromes myélodysplasiques/étiologie , Nucléophosmine , Polymorphisme de nucléotide simple , Jeune adulte
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE