Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtrer
1.
Cell Death Dis ; 14(12): 849, 2023 12 20.
Article de Anglais | MEDLINE | ID: mdl-38123597

RÉSUMÉ

p140Cap is an adaptor protein involved in assembling multi-protein complexes regulating several cellular processes. p140Cap acts as a tumor suppressor in breast cancer (BC) and neuroblastoma patients, where its expression correlates with a better prognosis. The role of p140Cap in tumor metabolism remains largely unknown. Here we study the role of p140Cap in the modulation of the mevalonate (MVA) pathway in BC cells. The MVA pathway is responsible for the biosynthesis of cholesterol and non-sterol isoprenoids and is often deregulated in cancer. We found that both in vitro and in vivo, p140Cap cells and tumors show an increased flux through the MVA pathway by positively regulating the pace-maker enzyme of the MVA pathway, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), via transcriptional and post-translational mechanisms. The higher cholesterol synthesis is paralleled with enhanced cholesterol efflux. Moreover, p140Cap promotes increased cholesterol localization in the plasma membrane and reduces lipid rafts-associated Rac1 signalling, impairing cell membrane fluidity and cell migration in a cholesterol-dependent manner. Finally, p140Cap BC cells exhibit decreased cell viability upon treatments with statins, alone or in combination with chemotherapeutic at low concentrations in a synergistic manner. Overall, our data highlight a new perspective point on tumor suppression in BC by establishing a previously uncharacterized role of the MVA pathway in p140Cap expressing tumors, thus paving the way to the use of p140Cap as a potent biomarker to stratify patients for better tuning therapeutic options.


Sujet(s)
Tumeurs du sein , Inhibiteurs de l'hydroxyméthylglutaryl-CoA réductase , Humains , Femelle , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/génétique , Tumeurs du sein/métabolisme , Acide mévalonique/métabolisme , Inhibiteurs de l'hydroxyméthylglutaryl-CoA réductase/pharmacologie , Inhibiteurs de l'hydroxyméthylglutaryl-CoA réductase/usage thérapeutique , Cholestérol/métabolisme , Mouvement cellulaire
2.
Front Oncol ; 13: 1170264, 2023.
Article de Anglais | MEDLINE | ID: mdl-37265795

RÉSUMÉ

Breast cancer is a highly heterogeneous disease, at both inter- and intra-tumor levels, and this heterogeneity is a crucial determinant of malignant progression and response to treatments. In addition to genetic diversity and plasticity of cancer cells, the tumor microenvironment contributes to tumor heterogeneity shaping the physical and biological surroundings of the tumor. The activity of certain types of immune, endothelial or mesenchymal cells in the microenvironment can change the effectiveness of cancer therapies via a plethora of different mechanisms. Therefore, deciphering the interactions between the distinct cell types, their spatial organization and their specific contribution to tumor growth and drug sensitivity is still a major challenge. Dissecting intra-tumor heterogeneity is currently an urgent need to better define breast cancer biology and to develop therapeutic strategies targeting the microenvironment as helpful tools for combined and personalized treatment. In this review, we analyze the mechanisms by which the tumor microenvironment affects the characteristics of tumor heterogeneity that ultimately result in drug resistance, and we outline state of the art preclinical models and emerging technologies that will be instrumental in unraveling the impact of the tumor microenvironment on resistance to therapies.

3.
Nat Commun ; 14(1): 2350, 2023 05 11.
Article de Anglais | MEDLINE | ID: mdl-37169737

RÉSUMÉ

The p140Cap adaptor protein is a tumor suppressor in breast cancer associated with a favorable prognosis. Here we highlight a function of p140Cap in orchestrating local and systemic tumor-extrinsic events that eventually result in inhibition of the polymorphonuclear myeloid-derived suppressor cell function in creating an immunosuppressive tumor-promoting environment in the primary tumor, and premetastatic niches at distant sites. Integrative transcriptomic and preclinical studies unravel that p140Cap controls an epistatic axis where, through the upstream inhibition of ß-Catenin, it restricts tumorigenicity and self-renewal of tumor-initiating cells limiting the release of the inflammatory cytokine G-CSF, required for polymorphonuclear myeloid-derived suppressor cells to exert their local and systemic tumor conducive function. Mechanistically, p140Cap inhibition of ß-Catenin depends on its ability to localize in and stabilize the ß-Catenin destruction complex, promoting enhanced ß-Catenin inactivation. Clinical studies in women show that low p140Cap expression correlates with reduced presence of tumor-infiltrating lymphocytes and more aggressive tumor types in a large cohort of real-life female breast cancer patients, highlighting the potential of p140Cap as a biomarker for therapeutic intervention targeting the ß-Catenin/ Tumor-initiating cells /G-CSF/ polymorphonuclear myeloid-derived suppressor cell axis to restore an efficient anti-tumor immune response.


Sujet(s)
Tumeurs du sein , Femelle , Humains , bêta-Caténine/métabolisme , Région mammaire/anatomopathologie , Tumeurs du sein/génétique , Tumeurs du sein/immunologie , Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Lignée cellulaire tumorale , Immunité , Cellules souches tumorales/immunologie , Cellules souches tumorales/métabolisme
4.
J Neurosci ; 2022 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-35953295

RÉSUMÉ

The N-Methyl-D-aspartate receptors (NMDAR) are key players in both physiological and pathological synaptic plasticity because of their involvement in many aspects of neuronal transmission as well as learning and memory. The contribution in these events of different types of GluN2A-interacting proteins is still unclear. The p140Cap scaffold protein acts as a hub for postsynaptic complexes relevant to psychiatric and neurological disorders and regulates synaptic functions like the stabilization of mature dendritic spine, memory consolidation, long-term potentiation, and depression. Here we demonstrate that p140Cap directly binds the GluN2A subunit of NMDAR and modulates GluN2A-associated molecular network. Indeed, in p140Cap knockout male mice, GluN2A is less associated with PSD95 both in ex vivo synaptosomes and in cultured hippocampal neurons and p140Cap expression in knockout neurons can rescue GluN2A and PSD95 colocalization. p140Cap is crucial in the recruitment of GluN2A-containing NMDARs and, consequently, in regulating NMDARs intrinsic properties. p140Cap is associated to synaptic lipid-raft (LR) and to soluble postsynaptic membranes and GluN2A and PSD95 are less recruited into synaptic LR of p140Cap knockout male mice. g-STED microscopy on hippocampal neurons confirmed that p140Cap is required for embedding GluN2A clusters in LR in an activity-dependent fashion. In the synaptic compartment p140Cap influences the association between GluN2A and PSD95 and modulates GluN2A enrichment into LR. Overall, such increase in these membrane domains rich in signalling molecules results in improved signal transduction efficiency.SIGNIFICANT STATEMENTHere we originally show that the adaptor protein p140Cap directly binds the GluN2A subunit of NMDAR and modulates the GluN2A-associated molecular network. Moreover, we show for the first time that p140Cap also associates to synaptic lipid rafts and controls the selective recruitment of GluN2A and PSD95 to this specific compartment. Finally, g-STED microscopy on hippocampal neurons confirmed that p140Cap is required for embedding GluN2A clusters in lipid rafts in an activity-dependent fashion. Overall, our findings provide the molecular and functional dissection of p140Cap as a new active member of a highly dynamic synaptic network involved in memory consolidation, LTP and LTD that are known to be altered in neurological and psychiatric disorders.

5.
Front Oncol ; 12: 906670, 2022.
Article de Anglais | MEDLINE | ID: mdl-35719918

RÉSUMÉ

Cholesterol is an essential lipid primarily synthesized in the liver through the mevalonate pathway. Besides being a precursor of steroid hormones, bile acid, and vitamin D, it is an essential structural component of cell membranes, is enriched in membrane lipid rafts, and plays a key role in intracellular signal transduction. The lipid homeostasis is finely regulated end appears to be impaired in several types of tumors, including breast cancer. In this review, we will analyse the multifaceted roles of cholesterol and its derivatives in breast cancer progression. As an example of the bivalent role of cholesterol in the cell membrane of cancer cells, on the one hand, it reduces membrane fluidity, which has been associated with a more aggressive tumor phenotype in terms of cell motility and migration, leading to metastasis formation. On the other hand, it makes the membrane less permeable to small water-soluble molecules that would otherwise freely cross, resulting in a loss of chemotherapeutics permeability. Regarding cholesterol derivatives, a lower vitamin D is associated with an increased risk of breast cancer, while steroid hormones, coupled with the overexpression of their receptors, play a crucial role in breast cancer progression. Despite the role of cholesterol and derivatives molecules in breast cancer development is still controversial, the use of cholesterol targeting drugs like statins and zoledronic acid appears as a challenging promising tool for breast cancer treatment.

6.
Cells ; 11(7)2022 03 27.
Article de Anglais | MEDLINE | ID: mdl-35406693

RÉSUMÉ

Keratinocyte stem cells play a fundamental role in homeostasis and repair of stratified epithelial tissues. Transplantation of cultured keratinocytes autografts provides a landmark example of successful cellular therapies by restoring durable integrity in stratified epithelia lost to devastating tissue conditions. Despite the overall success of such procedures, failures still occur in case of paucity of cultured stem cells in therapeutic grafts. Strategies aiming at a further amplification of stem cells during keratinocyte ex vivo expansion may thus extend the applicability of these treatments to subjects in which endogenous stem cells pools are depauperated by aging, trauma, or disease. Pharmacological targeting of stem cell signaling pathways is recently emerging as a powerful strategy for improving stem cell maintenance and/or amplification. Recent experimental data indicate that pharmacological inhibition of two prominent keratinocyte signaling pathways governed by apical mTOR and ROCK protein kinases favor stem cell maintenance and/or amplification ex vivo and may improve the effectiveness of stem cell-based therapeutic procedures. In this review, we highlight the pathophysiological roles of mTOR and ROCK in keratinocyte biology and evaluate existing pre-clinical data on the effects of their inhibition in epithelial stem cell expansion for transplantation purposes.


Sujet(s)
Kératinocytes , Médecine régénérative , Différenciation cellulaire , Humains , Kératinocytes/métabolisme , Cellules souches/métabolisme , Sérine-thréonine kinases TOR/métabolisme
7.
Cell Mol Life Sci ; 79(4): 216, 2022 Mar 29.
Article de Anglais | MEDLINE | ID: mdl-35348905

RÉSUMÉ

MicroRNAs (miRNAs) are small, non-coding RNAs about 22 nucleotides in length that regulate the expression of target genes post-transcriptionally, and are highly involved in cancer progression. They are able to impact a variety of cell processes such as proliferation, apoptosis and differentiation and can consequently control tumor initiation, tumor progression and metastasis formation. miRNAs can regulate, at the same time, metabolic gene expression which, in turn, influences relevant traits of malignancy such as cell adhesion, migration and invasion. Since the interaction between metabolism and adhesion or cell movement has not, to date, been well understood, in this review, we will specifically focus on miRNA alterations that can interfere with some metabolic processes leading to the modulation of cancer cell movement. In addition, we will analyze the signaling pathways connecting metabolism and adhesion/migration, alterations that often affect cancer cell dissemination and metastasis formation.


Sujet(s)
microARN , Tumeurs , Adhérence cellulaire/génétique , Mouvement cellulaire/génétique , Glucose , Glutamine/génétique , Humains , microARN/génétique , microARN/métabolisme , Tumeurs/génétique , Tumeurs/anatomopathologie
8.
Front Cell Dev Biol ; 9: 729093, 2021.
Article de Anglais | MEDLINE | ID: mdl-34708040

RÉSUMÉ

p130Cas/BCAR1 is an adaptor protein devoid of any enzymatic or transcriptional activity, whose modular structure with various binding motifs, allows the formation of multi-protein signaling complexes. This results in the induction and/or maintenance of signaling pathways with pleiotropic effects on cell motility, cell adhesion, cytoskeleton remodeling, invasion, survival, and proliferation. Deregulation of p130Cas/BCAR1 adaptor protein has been extensively demonstrated in a variety of human cancers in which overexpression of p130Cas/BCAR1 correlates with increased malignancy. p140Cap (p130Cas associated protein), encoded by the SRCIN1 gene, has been discovered by affinity chromatography and mass spectrometry analysis of putative interactors of p130Cas. It came out that p140Cap associates with p130Cas not directly but through its interaction with the Src Kinase. p140Cap is highly expressed in neurons and to a lesser extent in epithelial tissues such as the mammary gland. Strikingly, in vivo and in vitro analysis identified its tumor suppressive role in breast cancer and in neuroblastoma, showing an inverse correlation between p140Cap expression in tumors and tumor progression. In this review, a synopsis of 15 years of research on the role of p130Cas/BCAR1 and p140Cap/SRCIN1 in breast cancer will be presented.

9.
Front Oncol ; 11: 610303, 2021.
Article de Anglais | MEDLINE | ID: mdl-33777750

RÉSUMÉ

Breast cancer progression is a complex process controlled by genetic and epigenetic factors that coordinate the crosstalk between tumor cells and the components of tumor microenvironment (TME). Among those, the immune cells play a dual role during cancer onset and progression, as they can protect from tumor progression by killing immunogenic neoplastic cells, but in the meanwhile can also shape tumor immunogenicity, contributing to tumor escape. The complex interplay between cancer and the immune TME influences the outcome of immunotherapy and of many other anti-cancer therapies. Herein, we present an updated view of the pro- and anti-tumor activities of the main immune cell populations present in breast TME, such as T and NK cells, myeloid cells, innate lymphoid cells, mast cells and eosinophils, and of the underlying cytokine-, cell-cell contact- and microvesicle-based mechanisms. Moreover, current and novel therapeutic options that can revert the immunosuppressive activity of breast TME will be discussed. To this end, clinical trials assessing the efficacy of CAR-T and CAR-NK cells, cancer vaccination, immunogenic cell death-inducing chemotherapy, DNA methyl transferase and histone deacetylase inhibitors, cytokines or their inhibitors and other immunotherapies in breast cancer patients will be reviewed. The knowledge of the complex interplay that elapses between tumor and immune cells, and of the experimental therapies targeting it, would help to develop new combination treatments able to overcome tumor immune evasion mechanisms and optimize clinical benefit of current immunotherapies.

10.
Cell Mol Life Sci ; 78(4): 1355-1367, 2021 Feb.
Article de Anglais | MEDLINE | ID: mdl-33079227

RÉSUMÉ

The p140Cap adaptor protein is a scaffold molecule encoded by the SRCIN1 gene, which is physiologically expressed in several epithelial tissues and in the neurons. However, p140Cap is also strongly expressed in a significant subset of cancers including breast cancer and neuroblastoma. Notably, cancer patients with high p140Cap expression in their primary tumors have a lower probability of developing a distant event and ERBB2-positive breast cancer sufferers show better survival. In neuroblastoma patients, SRCIN1 mRNA levels represent an independent risk factor, which is inversely correlated to disease aggressiveness. Consistent with clinical data, SRCIN1 gain or loss of function mouse models demonstrated that p140Cap may affect tumor growth and metastasis formation by controlling the signaling pathways involved in tumorigenesis and metastatic features. This study reviews data showing the relevance of SRCIN1/p140Cap in cancer patients, the impact of SRCIN1 status on p140Cap expression, the specific mechanisms through which p140Cap can limit cancer progression, the molecular functions regulated by p140Cap, along with the p140Cap interactome, to unveil its key role for patient stratification in clinics.


Sujet(s)
Protéines adaptatrices du transport vésiculaire/génétique , Tumeurs du sein/génétique , Carcinogenèse/génétique , Neuroblastome/génétique , Protéines adaptatrices de la transduction du signal/génétique , Animaux , Tumeurs du sein/anatomopathologie , Femelle , Régulation de l'expression des gènes tumoraux/génétique , Humains , Souris , Métastase tumorale , Neuroblastome/anatomopathologie , Récepteur ErbB-2/génétique , Transduction du signal/génétique
11.
Am J Cancer Res ; 10(12): 4308-4324, 2020.
Article de Anglais | MEDLINE | ID: mdl-33415001

RÉSUMÉ

The p140Cap adaptor protein, encoded by the SRCIN1 gene, negatively controls tumor progression, as demonstrated in the subgroup of HER2-amplified breast cancers and in neuroblastoma patients, where high p140Cap expression predicts a decreased probability of developing metastasis, with a significantly prolonged survival. In NeuT mice, a preclinical model or Her2-positive breast cancer, we previously reported that p140Cap counteracts Her2-dependent breast cancer progression, associating with the specific Rac1 Guanine Nucleotide Exchange Factor, Tiam1, and limiting the activation of both Tiam1 and Rac1. Here, we show that in TUBO breast cancer cells derived from the NeuT tumors, p140Cap expression causes Tiam1 redistribution along the apicobasal junctional axis. Furthermore, p140Cap and Tiam1 interact with E-cadherin, a member of the adherence junction, with a concomitant increase of E-cadherin at the cell membrane. We characterized biochemically the interaction between p140Cap and Tiam1, showing that the amino terminal region of p140Cap (1-287 amino acids) is sufficient to associate with full length Tiam1, and with the truncated catalytic domain of Tiam1, with a concomitant decrease of the Tiam1 activity. Moreover, in a large cohort of Her2 positive breast cancer, high levels of SRCIN1 expression positively correlates with increased survival in patients with high TIAM1 expression. Overall, our findings sustain a protective role of p140Cap in Her2 positive breast cancer, where p140Cap can associate with Tiam1 and negatively regulate the Tiam1/Rac1 axis.

12.
Cell Death Differ ; 27(2): 790-807, 2020 02.
Article de Anglais | MEDLINE | ID: mdl-31285546

RÉSUMÉ

Neuroblastoma is the most common extra-cranial pediatric solid tumor, responsible for 13-15% of pediatric cancer death. Its intrinsic heterogeneity makes it difficult to target for successful therapy. The adaptor protein p140Cap/SRCIN1 negatively regulates tumor cell features and limits breast cancer progression. This study wish to assess if p140Cap is a key biological determinant of neuroblastoma outcome. RNAseq profiles of a large cohort of neuroblastoma patients show that SRCIN1 mRNA levels are an independent risk factor inversely correlated to disease aggressiveness. In high-risk patients, CGH+SNP microarray analysis of primary neuroblastoma identifies SRCIN1 as frequently altered by hemizygous deletion, copy-neutral loss of heterozygosity, or disruption. Functional experiments show that p140Cap negatively regulates Src and STAT3 signaling, affects anchorage-independent growth and migration, in vivo tumor growth and spontaneous lung metastasis formation. p140Cap also increases sensitivity of neuroblastoma cells to doxorubicin and etoposide treatment, as well as to a combined treatment with chemotherapy drugs and Src inhibitors. Our functional findings point to a causal role of p140Cap in curbing the aggressiveness of neuroblastoma, due to its ability to impinge on specific molecular pathways, and to sensitize cells to therapeutic treatment. This study provides the first evidence that the SRCIN1/p140Cap adaptor protein is a key player in neuroblastoma as a new independent prognostic marker for patient outcome and treatment. Altogether, these data highlight the potential clinical impact of SRCIN1/p140Cap expression in neuroblastoma tumors, in terms of reducing cytotoxic effects of chemotherapy, one of the main issues for pediatric tumor treatment.


Sujet(s)
Protéines adaptatrices du transport vésiculaire/métabolisme , Marqueurs biologiques tumoraux/métabolisme , Tumeurs du poumon/secondaire , Neuroblastome/métabolisme , Protéines adaptatrices du transport vésiculaire/génétique , Animaux , Marqueurs biologiques tumoraux/génétique , Prolifération cellulaire , Survie cellulaire , Humains , Nourrisson , Tumeurs du poumon/diagnostic , Tumeurs du poumon/métabolisme , Mâle , Souris , Souris de lignée NOD , Souris SCID , Tumeurs expérimentales/métabolisme , Tumeurs expérimentales/anatomopathologie , Neuroblastome/diagnostic , ARN messager/génétique , ARN messager/métabolisme , Cellules cancéreuses en culture
15.
Nat Commun ; 8: 14797, 2017 03 16.
Article de Anglais | MEDLINE | ID: mdl-28300085

RÉSUMÉ

The docking protein p140Cap negatively regulates tumour cell features. Its relevance on breast cancer patient survival, as well as its ability to counteract relevant cancer signalling pathways, are not fully understood. Here we report that in patients with ERBB2-amplified breast cancer, a p140Cap-positive status associates with a significantly lower probability of developing a distant event, and a clear difference in survival. p140Cap dampens ERBB2-positive tumour cell progression, impairing tumour onset and growth in the NeuT mouse model, and counteracting epithelial mesenchymal transition, resulting in decreased metastasis formation. One major mechanism is the ability of p140Cap to interfere with ERBB2-dependent activation of Rac GTPase-controlled circuitries. Our findings point to a specific role of p140Cap in curbing the aggressiveness of ERBB2-amplified breast cancers and suggest that, due to its ability to impinge on specific molecular pathways, p140Cap may represent a predictive biomarker of response to targeted anti-ERBB2 therapies.


Sujet(s)
Protéines adaptatrices du transport vésiculaire/métabolisme , Tumeurs du sein/métabolisme , Récepteur ErbB-2/métabolisme , Protéines G rac/métabolisme , Protéines adaptatrices du transport vésiculaire/génétique , Animaux , Marqueurs biologiques tumoraux/génétique , Marqueurs biologiques tumoraux/métabolisme , Tumeurs du sein/génétique , Tumeurs du sein/anatomopathologie , Lignée cellulaire tumorale , Évolution de la maladie , Femelle , Régulation de l'expression des gènes tumoraux , Humains , Souris de lignée BALB C , Souris transgéniques , Métastase tumorale , Tumeurs expérimentales/génétique , Tumeurs expérimentales/métabolisme , Tumeurs expérimentales/anatomopathologie , Récepteur ErbB-2/génétique , Protéines G rac/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...