Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 36
Filtrer
1.
Acta Neuropathol Commun ; 12(1): 90, 2024 06 08.
Article de Anglais | MEDLINE | ID: mdl-38851733

RÉSUMÉ

Mitochondrial dysfunctions are key features of Alzheimer's disease (AD). The occurrence of these disturbances in the peripheral cells of AD patients and their potential correlation with disease progression are underinvestigated. We studied mitochondrial structure, function and mitophagy in fibroblasts from healthy volunteers and AD patients at the prodromal (AD-MCI) or demented (AD-D) stages. We carried out correlation studies with clinical cognitive scores, namely, (i) Mini-Mental State Examination (MMSE) and (ii) Dementia Rating-Scale Sum of Boxes (CDR-SOB), and with (iii) amyloid beta (Aß) plaque burden (PiB-PET imaging) and (iv) the accumulation of peripheral amyloid precursor protein C-terminal fragments (APP-CTFs). We revealed alterations in mitochondrial structure as well as specific mitochondrial dysfunction signatures in AD-MCI and AD-D fibroblasts and revealed that defective mitophagy and autophagy are linked to impaired lysosomal activity in AD-D fibroblasts. We reported significant correlations of a subset of these dysfunctions with cognitive decline, AD-related clinical hallmarks and peripheral APP-CTFs accumulation. This study emphasizes the potential use of peripheral cells for investigating AD pathophysiology.


Sujet(s)
Maladie d'Alzheimer , Fibroblastes , Mitochondries , Mitophagie , Humains , Maladie d'Alzheimer/anatomopathologie , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/imagerie diagnostique , Fibroblastes/anatomopathologie , Fibroblastes/métabolisme , Sujet âgé , Femelle , Mitochondries/anatomopathologie , Mitochondries/métabolisme , Mâle , Mitophagie/physiologie , Adulte d'âge moyen , Sujet âgé de 80 ans ou plus , Précurseur de la protéine bêta-amyloïde/métabolisme , Précurseur de la protéine bêta-amyloïde/génétique , Dysfonctionnement cognitif/anatomopathologie , Dysfonctionnement cognitif/métabolisme , Autophagie/physiologie
2.
Cell Death Dis ; 15(5): 367, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38806484

RÉSUMÉ

Mitochondria dysfunctions and mitophagy failure have been associated with several Alzheimer's disease (AD) related molecular actors including amyloid beta (Aß) and recently the amyloid precursor protein-C terminal fragments (APP-CTFs). The efficacy of the mitophagy process in neurons relies on regulated mitochondrial transport along axons involving a complex molecular machinery. The contribution of the amyloid precursor protein (APP) and its derived fragments to the mitochondrial transport machinery alterations in AD have not been investigated before. We report herein a change of the expression of mitochondrial transport proteins (SNPH and Miro1), motor adapters (TRANK1 and TRAK2), and components of the dynein and kinesin motors (i.e., IC1,2 and Kif5 (A, B, C) isoforms) by endogenous APP and by overexpression of APP carrying the familial Swedish mutation (APPswe). We show that APP-CTFs and Aß concomitantly regulate the expression of a set of transport proteins as demonstrated in APPswe cells treated with ß- and γ-secretase inhibitors and in cells Knock-down for presenilin 1 and 2. We further report the impact of APP-CTFs on the expression of transport proteins in AAV-injected C99 mice brains. Our data also indicate that both Aß oligomers (Aßo) and APP-CTFs impair the colocalization of mitochondria and transport proteins. This has been demonstrated in differentiated SH-SY5Y naive cells treated with Aßo and in differentiated SH-SY5Y and murine primary neurons expressing APPswe and treated with the γ-secretase inhibitor. Importantly, we uncover that the expression of a set of transport proteins is modulated in a disease-dependent manner in 3xTgAD mice and in human sporadic AD brains. This study highlights molecular mechanisms underlying mitochondrial transport defects in AD that likely contribute to mitophagy failure and disease progression.


Sujet(s)
Maladie d'Alzheimer , Précurseur de la protéine bêta-amyloïde , Mitochondries , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Maladie d'Alzheimer/génétique , Précurseur de la protéine bêta-amyloïde/métabolisme , Précurseur de la protéine bêta-amyloïde/génétique , Animaux , Mitochondries/métabolisme , Humains , Souris , Souris transgéniques , Neurones/métabolisme , Peptides bêta-amyloïdes/métabolisme , Protéines mitochondriales/métabolisme , Protéines mitochondriales/génétique , Amyloid precursor protein secretases/métabolisme , Kinésine/métabolisme , Transport biologique , Mitophagie , Protéines de tissu nerveux , Protéines G rho , Protéines et peptides de signalisation intracellulaire
3.
Cell Mol Life Sci ; 80(4): 97, 2023 Mar 17.
Article de Anglais | MEDLINE | ID: mdl-36930302

RÉSUMÉ

The processing of the amyloid precursor protein (APP) is one of the key events contributing to Alzheimer's disease (AD) etiology. Canonical cleavages by ß- and γ-secretases lead to Aß production which accumulate in amyloid plaques. Recently, the matrix metalloprotease MT5-MMP, referred to as η-secretase, has been identified as a novel APP cleaving enzyme producing a transmembrane fragment, ηCTF that undergoes subsequent cleavages by α- and ß-secretases yielding the Aηα and AÎ·ß peptides, respectively. The functions and contributions of ηCTF and its related fragments to AD pathology are poorly understood. In this study, we designed a novel immunological probe referred to as ηCTF-NTer antibody that specifically interacts with the N-terminal part of ηCTF targeting ηCTF, Aηα, AÎ·ß but not C99, C83 and Aß. We examined the fate and localization of ηCTF fragment in various cell models and in mice. We found that overexpressed ηCTF undergoes degradation in the proteasomal and autophagic pathways and accumulates mainly in the Golgi and in endosomes. Moreover, we observed the presence of ηCTF in small extracellular vesicles purified from neuroblastoma cells or from mouse brains expressing ηCTF. Importantly, the expression of ηCTF in fibroblasts devoid on APP leads to Aß production demonstrating its contribution to the amyloidogenic pathway. Finally, we observed an ηCTF-like immunoreactivity around amyloid plaques and an age-dependent accumulation of ηCTF in the triple-transgenic mouse AD model. Thus, our study suggests that the ηCTF fragment likely contributes to AD pathology by its exosomal spreading and involvement in Aß production.


Sujet(s)
Maladie d'Alzheimer , Vésicules extracellulaires , Souris , Animaux , Précurseur de la protéine bêta-amyloïde/génétique , Précurseur de la protéine bêta-amyloïde/métabolisme , Amyloid precursor protein secretases/génétique , Amyloid precursor protein secretases/métabolisme , Plaque amyloïde , Maladie d'Alzheimer/métabolisme , Souris transgéniques , Endosomes/métabolisme , Vésicules extracellulaires/métabolisme , Peptides bêta-amyloïdes/métabolisme
4.
Transl Psychiatry ; 13(1): 54, 2023 02 14.
Article de Anglais | MEDLINE | ID: mdl-36788216

RÉSUMÉ

Morphological alterations of the endosomal compartment have been widely described in post-mortem brains from Alzheimer's disease (AD) patients and subjects with Down syndrome (DS) who are at high risk for AD. Immunostaining with antibodies against endosomal markers such as Early Endosome Antigen 1 (EEA1) revealed increased size of EEA1-positive puncta. In DS, peripheral cells such as peripheral blood mononuclear cells (PBMCs) and fibroblasts, share similar phenotype even in the absence of AD. We previously found that PBMCs from AD patients have larger EEA1-positive puncta, correlating with brain amyloid load. Here we analysed the endosomal compartment of fibroblasts from a very well characterised cohort of AD patients (IMABio3) who underwent thorough clinical, imaging and biomarkers assessments. Twenty-one subjects were included (7 AD with mild cognitive impairment (AD-MCI), 7 AD with dementia (AD-D) and 7 controls) who had amyloid-PET at baseline (PiB) and neuropsychological tests at baseline and close to skin biopsy. Fibroblasts isolated from skin biopsies were immunostained with anti-EEA1 antibody and imaged using a spinning disk microscope. Endosomal compartment ultrastructure was also analysed by electron microscopy. All fibroblast lines were genotyped and their AD risk factors identified. Our results show a trend to an increased EEA1-positive puncta volume in fibroblasts from AD-D as compared to controls (p.adj = 0.12) and reveal enhanced endosome area in fibroblasts from AD-MCI and AD-AD versus controls. Larger puncta size correlated with PiB retention in different brain areas and with worse cognitive scores at the time of biopsy as well as faster decline from baseline to the time of biopsy. Finally, we identified three genetic risk factors for AD (ABCA1, COX7C and MYO15A) that were associated with larger EEA1 puncta volume. In conclusion, the endosomal compartment in fibroblasts could be used as cellular peripheral biomarker for both amyloid deposition and cognitive decline in AD patients.


Sujet(s)
Maladie d'Alzheimer , Dysfonctionnement cognitif , Humains , Amyloïde , Peptides bêta-amyloïdes , Endosomes/anatomopathologie , Fibroblastes , Agranulocytes , Tomographie par émission de positons
5.
Mol Psychiatry ; 28(1): 202-216, 2023 01.
Article de Anglais | MEDLINE | ID: mdl-35665766

RÉSUMÉ

Mitochondrial dysfunctions are central players in Alzheimer's disease (AD). In addition, impairments in mitophagy, the process of selective mitochondrial degradation by autophagy leading to a gradual accumulation of defective mitochondria, have also been reported to occur in AD. We provide an updated overview of the recent discoveries and advancements on mitophagic molecular dysfunctions in AD-derived fluids and cells as well as in AD brains. We discuss studies using AD cellular and animal models that have unraveled the contribution of relevant AD-related proteins (Tau, Aß, APP-derived fragments and APOE) in mitophagy failure. In accordance with the important role of impaired mitophagy in AD, we report on various therapeutic strategies aiming at stimulating mitophagy in AD and we summarize the benefits of these potential therapeutic strategies in human clinical trials.


Sujet(s)
Maladie d'Alzheimer , Animaux , Humains , Maladie d'Alzheimer/métabolisme , Mitophagie/physiologie , Autophagie/génétique , Mitochondries/métabolisme , Modèles animaux de maladie humaine , Peptides bêta-amyloïdes/métabolisme
7.
J Biol Chem ; 297(2): 100963, 2021 08.
Article de Anglais | MEDLINE | ID: mdl-34265307

RÉSUMÉ

The amyloid cascade hypothesis, which proposes a prominent role for full-length amyloid ß peptides in Alzheimer's disease, is currently being questioned. In addition to full-length amyloid ß peptide, several N-terminally truncated fragments of amyloid ß peptide could well contribute to Alzheimer's disease setting and/or progression. Among them, pyroGlu3-amyloid ß peptide appears to be one of the main components of early anatomical lesions in Alzheimer's disease-affected brains. Little is known about the proteolytic activities that could account for the N-terminal truncations of full-length amyloid ß, but they appear as the rate-limiting enzymes yielding the Glu3-amyloid ß peptide sequence that undergoes subsequent cyclization by glutaminyl cyclase, thereby yielding pyroGlu3-amyloid ß. Here, we investigated the contribution of dipeptidyl peptidase 4 in Glu3-amyloid ß peptide formation and the functional influence of its genetic depletion or pharmacological blockade on spine maturation as well as on pyroGlu3-amyloid ß peptide and amyloid ß 42-positive plaques and amyloid ß 42 load in the triple transgenic Alzheimer's disease mouse model. Furthermore, we examined whether reduction of dipeptidyl peptidase 4 could rescue learning and memory deficits displayed by these mice. Our data establish that dipeptidyl peptidase 4 reduction alleviates anatomical, biochemical, and behavioral Alzheimer's disease-related defects. Furthermore, we demonstrate that dipeptidyl peptidase 4 activity is increased early in sporadic Alzheimer's disease brains. Thus, our data demonstrate that dipeptidyl peptidase 4 participates in pyroGlu3-amyloid ß peptide formation and that targeting this peptidase could be considered as an alternative strategy to interfere with Alzheimer's disease progression.


Sujet(s)
Maladie d'Alzheimer , Animaux , Encéphale/métabolisme , Dipeptidyl peptidase 4 , Modèles animaux de maladie humaine , Humains , Souris , Plaque amyloïde
8.
Autophagy ; 17(12): 4363-4385, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34030589

RÉSUMÉ

Parkinson disease (PD)-affected brains show consistent endoplasmic reticulum (ER) stress and mitophagic dysfunctions. The mechanisms underlying these perturbations and how they are directly linked remain a matter of questions. XBP1 is a transcription factor activated upon ER stress after unconventional splicing by the nuclease ERN1/IREα thereby yielding XBP1s, whereas PINK1 is a kinase considered as the sensor of mitochondrial physiology and a master gatekeeper of mitophagy process. We showed that XBP1s transactivates PINK1 in human cells, primary cultured neurons and mice brain, and triggered a pro-mitophagic phenotype that was fully dependent of endogenous PINK1. We also unraveled a PINK1-dependent phosphorylation of XBP1s that conditioned its nuclear localization and thereby, governed its transcriptional activity. PINK1-induced XBP1s phosphorylation occurred at residues reminiscent of, and correlated to, those phosphorylated in substantia nigra of sporadic PD-affected brains. Overall, our study delineated a functional loop between XBP1s and PINK1 governing mitophagy that was disrupted in PD condition.Abbreviations: 6OHDA: 6-hydroxydopamine; baf: bafilomycin A1; BECN1: beclin 1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CCCP: carbonyl cyanide chlorophenylhydrazone; COX8A: cytochrome c oxidase subunit 8A; DDIT3/CHOP: DNA damage inducible transcript 3; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FACS: fluorescence-activated cell sorting; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFN2: mitofusin 2; OPTN: optineurin; PD: Parkinson disease; PINK1: PTEN-induced kinase 1; PCR: polymerase chain reaction:; PRKN: parkin RBR E3 ubiquitin protein ligase; XBP1s [p-S61A]: XBP1s phosphorylated at serine 61; XBP1s [p-T48A]: XBP1s phosphorylated at threonine 48; shRNA: short hairpin RNA, SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TM: tunicamycin; TMRM: tetramethyl rhodamine methylester; TOMM20: translocase of outer mitochondrial membrane 20; Toy: toyocamycin; TP: thapsigargin; UB: ubiquitin; UB (S65): ubiquitin phosphorylated at serine 65; UPR: unfolded protein response, XBP1: X-box binding protein 1; XBP1s: spliced X-box binding protein 1.


Sujet(s)
Mitophagie , Maladie de Parkinson , Protein kinases/métabolisme , Protéine-1 liant la boite X/métabolisme , Animaux , Autophagie , Endoribonucleases , Souris , Mitophagie/génétique , Maladie de Parkinson/génétique , Phosphorylation , Protein-Serine-Threonine Kinases
9.
Acta Neuropathol ; 141(6): 823-839, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-33881611

RÉSUMÉ

One of the main components of senile plaques in Alzheimer's disease (AD)-affected brain is the Aß peptide species harboring a pyroglutamate at position three pE3-Aß. Several studies indicated that pE3-Aß is toxic, prone to aggregation and serves as a seed of Aß aggregation. The cyclisation of the glutamate residue is produced by glutaminyl cyclase, the pharmacological and genetic reductions of which significantly alleviate AD-related anatomical lesions and cognitive defects in mice models. The cyclisation of the glutamate in position 3 requires prior removal of the Aß N-terminal aspartyl residue to allow subsequent biotransformation. The enzyme responsible for this rate-limiting catalytic step and its relevance as a putative trigger of AD pathology remained yet to be established. Here, we identify aminopeptidase A as the main exopeptidase involved in the N-terminal truncation of Aß and document its key contribution to AD-related anatomical and behavioral defects. First, we show by mass spectrometry that human recombinant aminopeptidase A (APA) truncates synthetic Aß1-40 to yield Aß2-40. We demonstrate that the pharmacological blockade of APA with its selective inhibitor RB150 restores the density of mature spines and significantly reduced filopodia-like processes in hippocampal organotypic slices cultures virally transduced with the Swedish mutated Aß-precursor protein (ßAPP). Pharmacological reduction of APA activity and lowering of its expression by shRNA affect pE3-42Aß- and Aß1-42-positive plaques and expressions in 3xTg-AD mice brains. Further, we show that both APA inhibitors and shRNA partly alleviate learning and memory deficits observed in 3xTg-AD mice. Importantly, we demonstrate that, concomitantly to the occurrence of pE3-42Aß-positive plaques, APA activity is augmented at early Braak stages in sporadic AD brains. Overall, our data indicate that APA is a key enzyme involved in Aß N-terminal truncation and suggest the potential benefit of targeting this proteolytic activity to interfere with AD pathology.


Sujet(s)
Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/physiopathologie , Peptides bêta-amyloïdes/métabolisme , Encéphale/métabolisme , Dysfonctionnement cognitif/métabolisme , Glutamyl aminopeptidase/métabolisme , Animaux , Encéphale/anatomopathologie , Lignée cellulaire , Modèles animaux de maladie humaine , Glutamyl aminopeptidase/antagonistes et inhibiteurs , Glutamyl aminopeptidase/physiologie , Hippocampe/métabolisme , Humains , Souris , Souris de lignée C57BL , Souris transgéniques , Plaque amyloïde/anatomopathologie
10.
Cells ; 10(1)2021 01 12.
Article de Anglais | MEDLINE | ID: mdl-33445705

RÉSUMÉ

Alzheimer's disease (AD) is a neurodegenerative pathology representing a socioeconomic challenge, however, the complex mechanism behind the disease is not yet fully understood [...].


Sujet(s)
Maladie d'Alzheimer/physiopathologie , Maladie d'Alzheimer/thérapie , Signalisation calcique , Animaux , Calcium/métabolisme , Humains , Plasticité neuronale , Neurones/métabolisme
11.
Acta Neuropathol ; 141(1): 39-65, 2021 01.
Article de Anglais | MEDLINE | ID: mdl-33079262

RÉSUMÉ

Several lines of recent evidence indicate that the amyloid precursor protein-derived C-terminal fragments (APP-CTFs) could correspond to an etiological trigger of Alzheimer's disease (AD) pathology. Altered mitochondrial homeostasis is considered an early event in AD development. However, the specific contribution of APP-CTFs to mitochondrial structure, function, and mitophagy defects remains to be established. Here, we demonstrate in neuroblastoma SH-SY5Y cells expressing either APP Swedish mutations, or the ß-secretase-derived APP-CTF fragment (C99) combined with ß- and γ-secretase inhibition, that APP-CTFs accumulation independently of Aß triggers excessive mitochondrial morphology alteration (i.e., size alteration and cristae disorganization) associated with enhanced mitochondrial reactive oxygen species production. APP-CTFs accumulation also elicit basal mitophagy failure illustrated by enhanced conversion of LC3, accumulation of LC3-I and/or LC3-II, non-degradation of SQSTM1/p62, inconsistent Parkin and PINK1 recruitment to mitochondria, enhanced levels of membrane and matrix mitochondrial proteins, and deficient fusion of mitochondria with lysosomes. We confirm the contribution of APP-CTFs accumulation to morphological mitochondria alteration and impaired basal mitophagy in vivo in young 3xTgAD transgenic mice treated with γ-secretase inhibitor as well as in adeno-associated-virus-C99 injected mice. Comparison of aged 2xTgAD and 3xTgAD mice indicates that, besides APP-CTFs, an additional contribution of Aß to late-stage mitophagy activation occurs. Importantly, we report on mitochondrial accumulation of APP-CTFs in human post-mortem sporadic AD brains correlating with mitophagy failure molecular signature. Since defective mitochondria homeostasis plays a pivotal role in AD pathogenesis, targeting mitochondrial dysfunctions and/or mitophagy by counteracting early APP-CTFs accumulation may represent relevant therapeutic interventions in AD.


Sujet(s)
Maladie d'Alzheimer/anatomopathologie , Précurseur de la protéine bêta-amyloïde/génétique , Précurseur de la protéine bêta-amyloïde/métabolisme , Encéphale/anatomopathologie , Mitochondries/anatomopathologie , Mitochondries/ultrastructure , Mitophagie/génétique , Sujet âgé , Sujet âgé de 80 ans ou plus , Maladie d'Alzheimer/métabolisme , Amyloid precursor protein secretases/antagonistes et inhibiteurs , Amyloid precursor protein secretases/métabolisme , Animaux , Aspartic acid endopeptidases/antagonistes et inhibiteurs , Aspartic acid endopeptidases/métabolisme , Autopsie , Lignée cellulaire , Femelle , Humains , Potentiel de membrane mitochondriale , Souris , Mitochondries/métabolisme , Fragments peptidiques/génétique , Fragments peptidiques/métabolisme , Espèces réactives de l'oxygène/métabolisme
12.
Int J Mol Sci ; 21(24)2020 Dec 14.
Article de Anglais | MEDLINE | ID: mdl-33327665

RÉSUMÉ

Alzheimer's disease (AD) is a multifactorial neurodegenerative pathology characterized by a progressive decline of cognitive functions. Alteration of various signaling cascades affecting distinct subcellular compartment functions and their communication likely contribute to AD progression. Among others, the alteration of the physical association between the endoplasmic reticulum (ER) and mitochondria, also reffered as mitochondria-associated membranes (MAMs), impacts various cellular housekeeping functions such as phospholipids-, glucose-, cholesterol-, and fatty-acid-metabolism, as well as calcium signaling, which are all altered in AD. Our review describes the physical and functional proteome crosstalk between the ER and mitochondria and highlights the contribution of distinct molecular components of MAMs to mitochondrial and ER dysfunctions in AD progression. We also discuss potential strategies targeting MAMs to improve mitochondria and ER functions in AD.


Sujet(s)
Maladie d'Alzheimer/métabolisme , Réticulum endoplasmique/métabolisme , Membranes mitochondriales/métabolisme , Animaux , Stress du réticulum endoplasmique/physiologie , Humains , Mitochondries/métabolisme
13.
Cells ; 9(12)2020 12 01.
Article de Anglais | MEDLINE | ID: mdl-33271984

RÉSUMÉ

Sustained imbalance in intracellular calcium (Ca2+) entry and clearance alters cellular integrity, ultimately leading to cellular homeostasis disequilibrium and cell death. Alzheimer's disease (AD) is the most common cause of dementia. Beside the major pathological features associated with AD-linked toxic amyloid beta (Aß) and hyperphosphorylated tau (p-tau), several studies suggested the contribution of altered Ca2+ handling in AD development. These studies documented physical or functional interactions of Aß with several Ca2+ handling proteins located either at the plasma membrane or in intracellular organelles including the endoplasmic reticulum (ER), considered the major intracellular Ca2+ pool. In this review, we describe the cellular components of ER Ca2+ dysregulations likely responsible for AD. These include alterations of the inositol 1,4,5-trisphosphate receptors' (IP3Rs) and ryanodine receptors' (RyRs) expression and function, dysfunction of the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) activity and upregulation of its truncated isoform (S1T), as well as presenilin (PS1, PS2)-mediated ER Ca2+ leak/ER Ca2+ release potentiation. Finally, we highlight the functional consequences of alterations of these ER Ca2+ components in AD pathology and unravel the potential benefit of targeting ER Ca2+ homeostasis as a tool to alleviate AD pathogenesis.


Sujet(s)
Maladie d'Alzheimer/métabolisme , Signalisation calcique/physiologie , Calcium/métabolisme , Réticulum endoplasmique/métabolisme , Peptides bêta-amyloïdes/métabolisme , Animaux , Membrane cellulaire/métabolisme , Homéostasie/physiologie , Humains , Récepteurs à l'inositol 1,4,5-triphosphate/métabolisme , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Sarcoplasmic Reticulum Calcium-Transporting ATPases/métabolisme
14.
Curr Alzheimer Res ; 17(4): 313-323, 2020.
Article de Anglais | MEDLINE | ID: mdl-32096743

RÉSUMÉ

Pathologic calcium (Ca2+) signaling linked to Alzheimer's Disease (AD) involves the intracellular Ca2+ release channels/ryanodine receptors (RyRs). RyRs are macromolecular complexes where the protein-protein interactions between RyRs and several regulatory proteins impact the channel function. Pharmacological and genetic approaches link the destabilization of RyRs macromolecular complexes to several human pathologies including brain disorders. In this review, we discuss our recent data, which demonstrated that enhanced neuronal RyR2-mediated Ca2+ leak in AD is associated with posttranslational modifications (hyperphosphorylation, oxidation, and nitrosylation) leading to RyR2 macromolecular complex remodeling, and dissociation of the stabilizing protein Calstabin2 from the channel. We describe RyR macromolecular complex structure and discuss the molecular mechanisms and signaling cascade underlying neuronal RyR2 remodeling in AD. We provide evidence linking RyR2 dysfunction with ß-adrenergic signaling cascade that is altered in AD. RyR2 remodeling in AD leads to histopathological lesions, alteration of synaptic plasticity, learning and memory deficits. Targeting RyR macromolecular complex remodeling should be considered as a new therapeutic window to treat/or prevent AD setting and/or progression.


Sujet(s)
Maladie d'Alzheimer/traitement médicamenteux , Signalisation calcique/physiologie , Systèmes de délivrance de médicaments/méthodes , Maturation post-traductionnelle des protéines/physiologie , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/métabolisme , Animaux , Inhibiteurs des canaux calciques/administration et posologie , Inhibiteurs des canaux calciques/métabolisme , Signalisation calcique/effets des médicaments et des substances chimiques , Systèmes de délivrance de médicaments/tendances , Humains , Maturation post-traductionnelle des protéines/effets des médicaments et des substances chimiques , Canal de libération du calcium du récepteur à la ryanodine/génétique
15.
Cells ; 8(12)2019 11 28.
Article de Anglais | MEDLINE | ID: mdl-31795302

RÉSUMÉ

Dysregulation of the Endoplasmic Reticulum (ER) Ca2+ homeostasis and subsequent ER stress activation occur in Alzheimer Disease (AD). We studied the contribution of the human truncated isoform of the sarco-endoplasmic reticulum Ca2+ ATPase 1 (S1T) to AD. We examined S1T expression in human AD-affected brains and its functional consequences in cellular and transgenic mice AD models. S1T expression is increased in sporadic AD brains and correlates with amyloid ß (Aß) and ER stress chaperone protein levels. Increased S1T expression was also observed in human neuroblastoma cells expressing Swedish-mutated ß-amyloid precursor protein (ßAPP) or treated with Aß oligomers. Lentiviral overexpression of S1T enhances in return the production of APP C-terminal fragments and Aß through specific increases of ß-secretase expression and activity, and triggers neuroinflammation. We describe a molecular interplay between S1T-dependent ER Ca2+ leak, ER stress and ßAPP-derived fragments that could contribute to AD setting and/or progression.


Sujet(s)
Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/métabolisme , Prédisposition aux maladies , Régulation de l'expression des gènes , Sarcoplasmic Reticulum Calcium-Transporting ATPases/génétique , Sujet âgé , Sujet âgé de 80 ans ou plus , Maladie d'Alzheimer/anatomopathologie , Amyloid precursor protein secretases/métabolisme , Peptides bêta-amyloïdes/métabolisme , Précurseur de la protéine bêta-amyloïde/métabolisme , Animaux , Marqueurs biologiques , Encéphale/métabolisme , Encéphale/anatomopathologie , Lignée cellulaire , Modèles animaux de maladie humaine , Stress du réticulum endoplasmique , Femelle , Humains , Immunohistochimie , Médiateurs de l'inflammation/métabolisme , Isoenzymes , Mâle , Souris , Souris transgéniques , Adulte d'âge moyen , Modèles biologiques , Agrégation pathologique de protéines , Sarcoplasmic Reticulum Calcium-Transporting ATPases/métabolisme , Transduction du signal
16.
Biol Psychiatry ; 83(5): 416-427, 2018 03 01.
Article de Anglais | MEDLINE | ID: mdl-28587718

RÉSUMÉ

BACKGROUND: Mitophagy and mitochondrial dynamics alterations are two major hallmarks of neurodegenerative diseases. Dysfunctional mitochondria accumulate in Alzheimer's disease-affected brains by yet unexplained mechanisms. METHODS: We combined cell biology, molecular biology, and pharmacological approaches to unravel a novel molecular pathway by which presenilins control phosphatase and tensin homolog-induced kinase 1 (Pink-1) expression and transcription. In vivo approaches were carried out on various transgenic and knockout animals as well as in adeno-associated virus-infected mice. Functional readout and mitochondrial physiology (mitochondrial potential) were assessed by combined procedures including flow cytometry, live imaging analysis, and immunohistochemistry. RESULTS: We show that presenilins 1 and 2 trigger opposite effects on promoter transactivation, messenger RNA, and protein expression of Pink-1. This control is linked to γ-secretase activity and ß-amyloid precursor protein but is independent of phosphatase and tensin homolog. We show that amyloid precursor protein intracellular domain (AICD) accounts for presenilin-dependent phenotype and upregulates Pink-1 transactivation in cells as well as in vivo in a Forkhead box O3a-dependent manner. Interestingly, the modulation of γ-secretase activity or AICD expression affects Pink-1-related control of mitophagy and mitochondrial dynamics. Finally, we show that parkin acts upstream of presenilins to control Pink-1 promoter transactivation and protein expression. CONCLUSIONS: Overall, we delineate a molecular cascade presenilins-AICD-Forkhead box O3a linking parkin to Pink-1. Our study demonstrates AICD-mediated Pink-1-dependent control of mitochondrial physiology by presenilins. Furthermore, it unravels a parkin-Pink-1 feedback loop controlling mitochondrial physiology that could be disrupted in neurodegenerative conditions.


Sujet(s)
Maladie d'Alzheimer/métabolisme , Amyloid precursor protein secretases/métabolisme , Précurseur de la protéine bêta-amyloïde/métabolisme , Protéine O3 à motif en tête de fourche/métabolisme , Hippocampe/métabolisme , Mitochondries/métabolisme , Présénilines/métabolisme , Protein kinases/métabolisme , Ubiquitin-protein ligases/métabolisme , Animaux , Lignée cellulaire , Modèles animaux de maladie humaine , Embryon de mammifère , Fibroblastes , Cellules HEK293 , Humains , Espace intracellulaire/métabolisme , Mâle , Souris , Souris de souche-129 , Souris de lignée C57BL , Souris transgéniques
17.
Acta Neuropathol ; 134(5): 749-767, 2017 11.
Article de Anglais | MEDLINE | ID: mdl-28631094

RÉSUMÉ

The mechanisms underlying ryanodine receptor (RyR) dysfunction associated with Alzheimer disease (AD) are still not well understood. Here, we show that neuronal RyR2 channels undergo post-translational remodeling (PKA phosphorylation, oxidation, and nitrosylation) in brains of AD patients, and in two murine models of AD (3 × Tg-AD, APP +/- /PS1 +/-). RyR2 is depleted of calstabin2 (KFBP12.6) in the channel complex, resulting in endoplasmic reticular (ER) calcium (Ca2+) leak. RyR-mediated ER Ca2+ leak activates Ca2+-dependent signaling pathways, contributing to AD pathogenesis. Pharmacological (using a novel RyR stabilizing drug Rycal) or genetic rescue of the RyR2-mediated intracellular Ca2+ leak improved synaptic plasticity, normalized behavioral and cognitive functions and reduced Aß load. Genetically altered mice with congenitally leaky RyR2 exhibited premature and severe defects in synaptic plasticity, behavior and cognitive function. These data provide a mechanism underlying leaky RyR2 channels, which could be considered as potential AD therapeutic targets.


Sujet(s)
Maladie d'Alzheimer/métabolisme , Calcium/métabolisme , Troubles de la cognition/métabolisme , Maturation post-traductionnelle des protéines , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Maladie d'Alzheimer/anatomopathologie , Animaux , Signalisation calcique , Troubles de la cognition/anatomopathologie , Cyclic AMP-Dependent Protein Kinases/métabolisme , Femelle , Humains , Mâle , Apprentissage du labyrinthe/physiologie , Souris , Souris transgéniques , Stress oxydatif/physiologie , Phosphorylation , /physiologie , Réticulum sarcoplasmique/métabolisme
18.
J Biol Chem ; 292(24): 10153-10168, 2017 06 16.
Article de Anglais | MEDLINE | ID: mdl-28476886

RÉSUMÉ

Alteration of ryanodine receptor (RyR)-mediated calcium (Ca2+) signaling has been reported in Alzheimer disease (AD) models. However, the molecular mechanisms underlying altered RyR-mediated intracellular Ca2+ release in AD remain to be fully elucidated. We report here that RyR2 undergoes post-translational modifications (phosphorylation, oxidation, and nitrosylation) in SH-SY5Y neuroblastoma cells expressing the ß-amyloid precursor protein (ßAPP) harboring the familial double Swedish mutations (APPswe). RyR2 macromolecular complex remodeling, characterized by depletion of the regulatory protein calstabin2, resulted in increased cytosolic Ca2+ levels and mitochondrial oxidative stress. We also report a functional interplay between amyloid ß (Aß), ß-adrenergic signaling, and altered Ca2+ signaling via leaky RyR2 channels. Thus, post-translational modifications of RyR occur downstream of Aß through a ß2-adrenergic signaling cascade that activates PKA. RyR2 remodeling in turn enhances ßAPP processing. Importantly, pharmacological stabilization of the binding of calstabin2 to RyR2 channels, which prevents Ca2+ leakage, or blocking the ß2-adrenergic signaling cascade reduced ßAPP processing and the production of Aß in APPswe-expressing SH-SY5Y cells. We conclude that targeting RyR-mediated Ca2+ leakage may be a therapeutic approach to treat AD.


Sujet(s)
Peptides bêta-amyloïdes/métabolisme , Signalisation calcique , Neurones/enzymologie , Maturation post-traductionnelle des protéines , Récepteurs bêta-2 adrénergiques/métabolisme , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Antagonistes des récepteurs bêta-2 adrénergiques/pharmacologie , Maladie d'Alzheimer/enzymologie , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Peptides bêta-amyloïdes/génétique , Précurseur de la protéine bêta-amyloïde/génétique , Précurseur de la protéine bêta-amyloïde/métabolisme , Signalisation calcique/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Cyclic AMP-Dependent Protein Kinases/composition chimique , Cyclic AMP-Dependent Protein Kinases/métabolisme , Activation enzymatique/effets des médicaments et des substances chimiques , Humains , Mutation , Protéines de tissu nerveux/agonistes , Protéines de tissu nerveux/composition chimique , Protéines de tissu nerveux/génétique , Protéines de tissu nerveux/métabolisme , Neurones/effets des médicaments et des substances chimiques , Neurones/métabolisme , Neurones/anatomopathologie , Oxydoréduction , Stress oxydatif/effets des médicaments et des substances chimiques , Phosphorylation/effets des médicaments et des substances chimiques , Multimérisation de protéines/effets des médicaments et des substances chimiques , Maturation post-traductionnelle des protéines/effets des médicaments et des substances chimiques , Protéolyse/effets des médicaments et des substances chimiques , Récepteurs bêta-2 adrénergiques/composition chimique , Récepteurs bêta-2 adrénergiques/génétique , Protéines recombinantes/composition chimique , Protéines recombinantes/métabolisme , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Protéines de liaison au tacrolimus/antagonistes et inhibiteurs , Protéines de liaison au tacrolimus/métabolisme
19.
J Alzheimers Dis ; 55(4): 1549-1570, 2017.
Article de Anglais | MEDLINE | ID: mdl-27911326

RÉSUMÉ

Alteration of mitochondria-associated membranes (MAMs) has been proposed to contribute to the pathogenesis of Alzheimer's disease (AD). We studied herein the subcellular distribution, the processing, and the protein interactome of the amyloid-ß protein precursor (AßPP) and its proteolytic products in MAMs. We reveal that AßPP and its catabolites are present in MAMs in cellular models overexpressing wild type AßPP or AßPP harboring the double Swedish or London familial AD mutations, and in brains of transgenic mice model of AD. Furthermore, we evidenced that both ß- and γ-secretases are present and harbor AßPP processing activities in MAMs. Interestingly, cells overexpressing APPswe show increased ER-mitochondria contact sites. We also document increased neutral lipid accumulation linked to Aß production and reversed by inhibiting ß- or γ-secretases. Using a proteomic approach, we show that AßPP and its catabolites interact with key proteins of MAMs controlling mitochondria and ER functions. These data highlight the role of AßPP processing and proteomic interactome in MAMs deregulation taking place in AD.


Sujet(s)
Précurseur de la protéine bêta-amyloïde/métabolisme , Membrane cellulaire/métabolisme , Mitochondries/métabolisme , Amyloid precursor protein secretases/métabolisme , Peptides bêta-amyloïdes/génétique , Peptides bêta-amyloïdes/métabolisme , Précurseur de la protéine bêta-amyloïde/génétique , Animaux , Cellules CHO , Lignée cellulaire tumorale , Membrane cellulaire/effets des médicaments et des substances chimiques , Membrane cellulaire/ultrastructure , Cricetulus , Complexe IV de la chaîne respiratoire/métabolisme , Antienzymes/pharmacologie , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes/physiologie , Humains , Immunoprécipitation , Souris , Souris transgéniques , Microscopie électronique , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/ultrastructure , Mutation/génétique , Neuroblastome/anatomopathologie , Préséniline-1/génétique , Préséniline-1/métabolisme , Pyrazoles/pharmacologie , Quinoléines/pharmacologie , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Spectrométrie de masse MALDI , Transfection , Canal anionique-1 voltage-dépendant/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE