Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Biol Chem ; 289(28): 19789-98, 2014 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-24855649

RÉSUMÉ

Because the deubiquitinating enzyme USP33 is involved in several important cellular processes (ß-adrenergic receptor recycling, centrosome amplification, RalB signaling, and cancer cell migration), its levels must be carefully regulated. Using quantitative mass spectrometry, we found that the intracellular level of USP33 is highly sensitive to the activity of p97. Knockdown or chemical inhibition of p97 causes robust accumulation of USP33 due to inhibition of its degradation. The p97 adaptor complex involved in this function is the Ufd1-Npl4 heterodimer. Furthermore, we identified HERC2, a HECT domain-containing E3 ligase, as being responsible for polyubiquitination of USP33. Inhibition of p97 causes accumulation of polyubiquitinated USP33, suggesting that p97 is required for postubiquitination processing. Thus, our study has identified several key molecules that control USP33 degradation within the ubiquitin-proteasome system.


Sujet(s)
Adenosine triphosphatases/métabolisme , Protéines du cycle cellulaire/métabolisme , Facteurs d'échange de nucléotides guanyliques/métabolisme , Protéolyse , Ubiquitin thiolesterase/métabolisme , Ubiquitination/physiologie , Adenosine triphosphatases/génétique , Animaux , Protéines du cycle cellulaire/génétique , Facteurs d'échange de nucléotides guanyliques/génétique , Cellules HeLa , Humains , Souris , Cellules NIH 3T3 , Proteasome endopeptidase complex/génétique , Proteasome endopeptidase complex/métabolisme , Ubiquitine/génétique , Ubiquitine/métabolisme , Ubiquitin thiolesterase/génétique , Ubiquitin-protein ligases , Protéine contenant la valosine
2.
J Biol Chem ; 287(13): 9855-9861, 2012 Mar 23.
Article de Anglais | MEDLINE | ID: mdl-22303011

RÉSUMÉ

The mitochondrial fission machinery is best understood in the yeast Saccharomyces cerevisiae, where Fis1, Mdv1, and Dnm1 are essential components. Fis1 is a mitochondrial outer membrane protein that recruits the dynamin-related GTPase Dnm1 during the fission process. This recruitment occurs via Mdv1, which binds both Fis1 and Dnm1 and therefore functions as a molecular adaptor linking the two molecules. Mdv1 has a modular structure, consisting of an N-terminal extension that binds Fis1, a central coiled coil for dimerization, and a C-terminal WD40 repeat region that binds Dnm1. We have solved the crystal structure of a dimeric Mdv1-Fis1 complex that contains both the N-terminal extension and coiled-coil regions of Mdv1. Consistent with previous studies, Mdv1 binds Fis1 through a U-shaped helix-loop-helix motif, and dimerization of the Mdv1-Fis1 complex is mediated by the antiparallel coiled coil of Mdv1. However, the complex is surprisingly compact and rigid due to two additional contacts mediated by the surface of the Mdv1 coiled coil. The coiled coil packs against both Fis1 and the second helix of the Mdv1 helix-loop-helix motif. Mutational analyses showed that these contacts are important for mitochondrial fission activity. These results indicate that, in addition to dimerization, the unusually long Mdv1 coiled coil serves a scaffolding function to stabilize the Mdv1-Fis1 complex.


Sujet(s)
Protéines adaptatrices de la transduction du signal/composition chimique , Mitochondries/composition chimique , Complexes multiprotéiques/composition chimique , Pliage des protéines , Multimérisation de protéines , Protéines de Saccharomyces cerevisiae/composition chimique , Saccharomyces cerevisiae/composition chimique , Protéines adaptatrices de la transduction du signal/génétique , Protéines adaptatrices de la transduction du signal/métabolisme , Cristallographie aux rayons X , dGTPases/composition chimique , dGTPases/génétique , dGTPases/métabolisme , Motifs à hélice-boucle-hélice , Mitochondries/génétique , Mitochondries/métabolisme , Protéines mitochondriales/composition chimique , Protéines mitochondriales/génétique , Protéines mitochondriales/métabolisme , Complexes multiprotéiques/génétique , Complexes multiprotéiques/métabolisme , Liaison aux protéines , Structure quaternaire des protéines , Structure tertiaire des protéines , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme
3.
Autophagy ; 7(7): 771-2, 2011 Jul.
Article de Anglais | MEDLINE | ID: mdl-21460629

RÉSUMÉ

Parkin is a ubiquitin E3 ligase that is implicated in familial Parkinson disease (PD). Previous studies have established its role in mitophagy, a pathway whereby dysfunctional mitochondria are targeted for autophagic degradation. We recently reported that a major function of Parkin in dysfunctional mitochondria is to activate the ubiquitin-proteasome system (UPS) for proteolysis of multiple outer membrane proteins, and that such activation of the UPS is a critical step in Parkin-mediated mitophagy. Here, we discuss the possible roles of the UPS in mitophagy and the pathogenesis of PD.


Sujet(s)
Mitochondries/métabolisme , Mitochondries/anatomopathologie , Proteasome endopeptidase complex/métabolisme , Ubiquitin-protein ligases/métabolisme , Ubiquitine/métabolisme , Animaux , Autophagie , Modèles biologiques
4.
Hum Mol Genet ; 20(9): 1726-37, 2011 May 01.
Article de Anglais | MEDLINE | ID: mdl-21296869

RÉSUMÉ

Parkin, an E3 ubiquitin ligase implicated in Parkinson's disease, promotes degradation of dysfunctional mitochondria by autophagy. Using proteomic and cellular approaches, we show that upon translocation to mitochondria, Parkin activates the ubiquitin-proteasome system (UPS) for widespread degradation of outer membrane proteins. This is evidenced by an increase in K48-linked polyubiquitin on mitochondria, recruitment of the 26S proteasome and rapid degradation of multiple outer membrane proteins. The degradation of proteins by the UPS occurs independently of the autophagy pathway, and inhibition of the 26S proteasome completely abrogates Parkin-mediated mitophagy in HeLa, SH-SY5Y and mouse cells. Although the mitofusins Mfn1 and Mfn2 are rapid degradation targets of Parkin, we find that degradation of additional targets is essential for mitophagy. These results indicate that remodeling of the mitochondrial outer membrane proteome is important for mitophagy, and reveal a causal link between the UPS and autophagy, the major pathways for degradation of intracellular substrates.


Sujet(s)
Mitochondries/métabolisme , Maladie de Parkinson/métabolisme , Proteasome endopeptidase complex/métabolisme , Ubiquitin-protein ligases/métabolisme , Ubiquitine/métabolisme , Animaux , Autophagie , Lignée cellulaire , Humains , Souris , Mitochondries/génétique , Protéines mitochondriales/génétique , Protéines mitochondriales/métabolisme , Maladie de Parkinson/enzymologie , Maladie de Parkinson/génétique , Maladie de Parkinson/physiopathologie , Proteasome endopeptidase complex/génétique , Ubiquitin-protein ligases/génétique
5.
Eukaryot Cell ; 8(1): 19-26, 2009 Jan.
Article de Anglais | MEDLINE | ID: mdl-19028997

RÉSUMÉ

Microsporidia are a group of highly adapted obligate intracellular parasites that are now recognized as close relatives of fungi. Their adaptation to parasitism has resulted in broad and severe reduction at (i) a genomic level by extensive gene loss, gene compaction, and gene shortening; (ii) a biochemical level with the loss of much basic metabolism; and (iii) a cellular level, resulting in lost or cryptic organelles. Consistent with this trend, the mitochondrion is severely reduced, lacking ATP synthesis and other typical functions and apparently containing only a fraction of the proteins of canonical mitochondria. We have investigated the mitochondrial protein import apparatus of this reduced organelle in the microsporidian Encephalitozoon cuniculi and find evidence of reduced and modified machinery. Notably, a putative outer membrane receptor, Tom70, is reduced in length but maintains a conserved structure chiefly consisting of tetratricopeptide repeats. When expressed in Saccharomyces cerevisiae, EcTom70 inserts with the correct topology into the outer membrane of mitochondria but is unable to complement the growth defects of Tom70-deficient yeast. We have scanned genomic data using hidden Markov models for other homologues of import machinery proteins and find evidence of severe reduction of this system.


Sujet(s)
Protéines fongiques/métabolisme , Microsporidia/métabolisme , Mitochondries/métabolisme , Protéines mitochondriales/métabolisme , Séquence d'acides aminés , Protéines fongiques/composition chimique , Protéines fongiques/génétique , Test de complémentation , Microsporidia/composition chimique , Microsporidia/génétique , Mitochondries/composition chimique , Mitochondries/génétique , Protéines mitochondriales/composition chimique , Protéines mitochondriales/génétique , Données de séquences moléculaires , Transport des protéines , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Alignement de séquences
6.
J Mol Biol ; 376(3): 694-704, 2008 Feb 22.
Article de Anglais | MEDLINE | ID: mdl-18187149

RÉSUMÉ

Mitochondria cannot be made de novo. Mitochondrial biogenesis requires that up to 1000 proteins are imported into mitochondria, and the protein import pathway relies on hetero-oligomeric translocase complexes in both the inner and outer mitochondrial membranes. The translocase in the outer membrane, the TOM complex, is composed of a core complex formed from the beta-barrel channel Tom40 and additional subunits each with single, alpha-helical transmembrane segments. How alpha-helical transmembrane segments might be assembled onto a transmembrane beta-barrel in the context of a membrane environment is a question of fundamental importance. The master receptor subunit of the TOM complex, Tom20, recognizes the targeting sequence on incoming mitochondrial precursor proteins, binds these protein ligands, and then transfers them to the core complex for translocation across the outer membrane. Here we show that the transmembrane segment of Tom20 contains critical residues essential for docking the Tom20 receptor into its correct environment within the TOM complex. This crucial docking reaction is catalyzed by the unique assembly factor Mim1/Tom13. Mutations in the transmembrane segment that destabilize Tom20, or deletion of Mim1, prevent Tom20 from functioning as a receptor for protein import into mitochondria.


Sujet(s)
Protéines de transport/métabolisme , Protéines membranaires/métabolisme , Récepteurs cytoplasmiques et nucléaires/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Séquence d'acides aminés , Animaux , Séquence conservée , Protéines membranaires/génétique , Protéines de transport de la membrane mitochondriale , Membranes mitochondriales/composition chimique , Membranes mitochondriales/métabolisme , Protéines du complexe d'import des protéines précurseurs mitochondriales , Données de séquences moléculaires , Mutagenèse dirigée , Structure tertiaire des protéines , Récepteurs cytoplasmiques et nucléaires/composition chimique , Récepteurs cytoplasmiques et nucléaires/génétique , Saccharomyces cerevisiae , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/génétique
7.
Mol Biol Cell ; 19(1): 126-36, 2008 Jan.
Article de Anglais | MEDLINE | ID: mdl-17978093

RÉSUMÉ

The sorting and assembly machinery (SAM) complex functions in the assembly of beta-barrel proteins into the mitochondrial outer membrane. It is related to the Omp85/YaeT machinery in bacterial outer membranes, but the eukaryotic SAM complex is distinguished by two peripheral subunits, Sam37 and Sam35, that sit on the cytosolic face of the complex. The function of these subunits in beta-barrel protein assembly is currently unclear. By screening a library of sam35 mutants, we show that 13 distinct alleles were each specifically suppressed by overexpression of SAM37. Two of these mutants, sam35-409 and sam35-424, show distinct phenotypes that enable us to distinguish the function of Sam35 from that of Sam37. Sam35 is required for the SAM complex to bind outer membrane substrate proteins: destabilization of Sam35 inhibits substrate binding by Sam50. Sam37 acts later than Sam35, apparently to assist release of substrates from the SAM complex. Very different environments surround bacteria and mitochondria, and we discuss the role of Sam35 and Sam37 in terms of the problems peculiar to mitochondrial protein substrates.


Sujet(s)
Membranes mitochondriales/métabolisme , Protéines mitochondriales/métabolisme , Sous-unités de protéines/métabolisme , Allèles , Modèles biologiques , Mutation/génétique , Phénotype , Liaison aux protéines , Structure secondaire des protéines , Saccharomyces cerevisiae/cytologie , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/métabolisme , Suppression génétique , Température
8.
Mol Biol Cell ; 18(2): 426-40, 2007 Feb.
Article de Anglais | MEDLINE | ID: mdl-17108329

RÉSUMÉ

The Saccharomyces cerevisiae basic leucine zipper transcription factor Hac1p is synthesized in response to the accumulation of unfolded polypeptides in the lumen of the endoplasmic reticulum (ER), and it is responsible for up-regulation of approximately 5% of all yeast genes, including ER-resident chaperones and protein-folding catalysts. Hac1p is one of the most short-lived yeast proteins, having a half-life of approximately 1.5 min. Here, we have shown that Hac1p harbors a functional PEST degron and that degradation of Hac1p by the proteasome involves the E2 ubiquitin-conjugating enzyme Ubc3/Cdc34p and the SCF(Cdc4) E3 complex. Consistent with the known nuclear localization of Cdc4p, rapid degradation of Hac1p requires the presence of a functional nuclear localization sequence, which we demonstrated to involve basic residues in the sequence (29)RKRAKTK(35). Two-hybrid analysis demonstrated that the PEST-dependent interaction of Hac1p with Cdc4p requires Ser146 and Ser149. Turnover of Hac1p may be dependent on transcription because it is inhibited in cell mutants lacking Srb10 kinase, a component of the SRB/mediator module of the RNA polymerase II holoenzyme. Stabilization of Hac1p by point mutation or deletion, or as the consequence of defects in components of the degradation pathway, results in increased unfolded protein response element-dependent transcription and improved cell viability under ER stress conditions.


Sujet(s)
Facteurs de transcription à motif basique et à glissière à leucines/métabolisme , Protéines du cycle cellulaire/métabolisme , Proteasome endopeptidase complex/métabolisme , Protéines de répression/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/métabolisme , Facteurs de transcription/métabolisme , Ubiquitin-protein ligases/métabolisme , Motifs d'acides aminés , Séquence d'acides aminés , Complexe promoteur de l'anaphase , Facteurs de transcription à motif basique et à glissière à leucines/analyse , Sites de fixation , Noyau de la cellule/composition chimique , Noyau de la cellule/métabolisme , Survie cellulaire , Cyclin-Dependent Kinase 8 , Kinases cyclines-dépendantes/métabolisme , Protéines F-box , Mitogen-Activated Protein Kinase Kinases/métabolisme , Données de séquences moléculaires , Mutation , Pliage des protéines , Protéines de répression/analyse , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/analyse , Sérine/composition chimique , Sérine/génétique , Facteurs de transcription/analyse , Techniques de double hybride , Ubiquitine/métabolisme , Ubiquitin-conjugating enzymes , Ubiquitin-protein ligase complexes/métabolisme
9.
FEBS J ; 273(7): 1507-15, 2006 Apr.
Article de Anglais | MEDLINE | ID: mdl-16689936

RÉSUMÉ

Mitochondria evolved from a bacterial endosymbiont ancestor in which the integral outer membrane proteins would have been beta-barrel structured within the plane of the membrane. Initial proteomics on the outer membrane from yeast mitochondria suggest that while most of the protein components are integral in the membrane, most of these mitochondrial proteins behave as if they have alpha-helical transmembrane domains, rather than beta-barrels. These proteins are usually predicted to have a single alpha-helical transmembrane segment at either the N- or C-terminus, however, more complex topologies are also seen. We purified the novel outer membrane protein Om14 and show it is encoded in the gene YBR230c. Protein sequencing revealed an intron is spliced from the transcript, and both transcription from the YBR230c gene and steady-state level of the Om14 protein is dramatically less in cells grown on glucose than in cells grown on nonfermentable carbon sources. Hydropathy predictions together with data from limited protease digestion show three alpha-helical transmembrane segments in Om14. The alpha-helical outer membrane proteins provide functions derived after the endosymbiotic event, and require the translocase in the outer mitochondrial membrane complex for insertion into the outer membrane.


Sujet(s)
Protéines membranaires/composition chimique , Mitochondries/métabolisme , Protéines mitochondriales/composition chimique , Protéines de Saccharomyces cerevisiae/composition chimique , Saccharomyces cerevisiae/cytologie , Séquence d'acides aminés , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Mitochondries/ultrastructure , Protéines mitochondriales/génétique , Protéines mitochondriales/métabolisme , Données de séquences moléculaires , Conformation des protéines , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme
10.
J Mol Biol ; 358(4): 1010-22, 2006 May 12.
Article de Anglais | MEDLINE | ID: mdl-16566938

RÉSUMÉ

In fungi and animals the translocase in the outer mitochondrial membrane (TOM complex) consists of multiple components including the receptor subunit Tom70. Genome sequence analyses suggest no Tom70 receptor subunit exists in plants or protozoans, raising questions about its ancestry, function and the importance of its activity. Here we characterise the relationships within the Tom70 family of proteins. We find that in both fungi and animals, a conserved domain structure exists within the Tom70 family, with a transmembrane segment followed by 11 tetratricopeptide repeat motifs organised in three distinct domains. The C-terminal domain of Tom70 is highly conserved, and crucial for the import of hydrophobic substrate proteins, including those with and those without N-terminal presequences. Tom70 likely arose after fungi and animals diverged from other eukaryote lineages including plants, and subsequent gene duplication gave rise to a paralogue specific to the Saccharomyces group of yeasts. In animals and in fungi, Tom70 plays a fundamental role in the import of precursor proteins, by assisting relatively hydrophobic regions of substrate proteins into the translocation channel in the outer mitochondrial membrane. Proteins that function equivalently to Tom70 may have arisen independently in plants and protists.


Sujet(s)
Protéines membranaires/composition chimique , Protéines membranaires/génétique , Protéines mitochondriales/composition chimique , Protéines mitochondriales/génétique , Récepteurs cytoplasmiques et nucléaires/composition chimique , Récepteurs cytoplasmiques et nucléaires/génétique , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/génétique , Animaux , Séquence nucléotidique , Sites de fixation , Séquence conservée , ADN/génétique , ADN fongique/génétique , Évolution moléculaire , Techniques in vitro , Protéines membranaires/métabolisme , Mitochondries/métabolisme , Protéines de transport de la membrane mitochondriale , Protéines du complexe d'import des protéines précurseurs mitochondriales , Protéines mitochondriales/métabolisme , Phylogenèse , Structure tertiaire des protéines , Transport des protéines , Rats , Récepteurs cytoplasmiques et nucléaires/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...