Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Psychiatry Res ; 340: 116100, 2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39121760

RÉSUMÉ

Early intervention is imperative for young children with attention-deficit/hyperactivity disorder (ADHD) who manifest heterogeneous neurocognitive deficits. The study investigated the functional connectivity and complexity of brain activity among young children with ADHD exhibiting a fast cognitive processing speed (ADHD-F, n = 26), with ADHD exhibiting a slow cognitive processing speed (ADHD-S, n = 17), and typically developing children (n = 35) using wireless electroencephalography (EEG) during rest and task conditions. During rest, compared with the typically developing group, the ADHD-F group displayed lower long-range intra-hemispheric connectivity, while the ADHD-S group had lower frontal beta inter-hemispheric connectivity. During task performance, the ADHD-S group displayed lower frontal beta inter-hemispheric connectivity than the typically developing group. The ADHD-S group had lower frontal inter-hemispheric connectivity in broader frequency bands than the ADHD-F group, indicating ADHD heterogeneity in mental processing speed. Regarding complexity, the ADHD-S group tended to show lower frontal entropy estimators than the typically developing group during the task condition. These findings suggest that the EEG profile of brain connectivity and complexity can aid the early clinical diagnosis of ADHD, support subgrouping young children with ADHD based on cognitive processing speed heterogeneity, and may contain specific novel neural biomarkers for early intervention planning.

2.
Article de Anglais | MEDLINE | ID: mdl-38991977

RÉSUMÉ

OBJECTIVE: The identification and diagnosis of children with attention deficit hyperactivity disorder (ADHD) traits is challenging during the preschool stage. Neuropsychological measures may be useful in early assessments. Furthermore, analysis of event-related behavior appears to be an unmet need for clinical treatment planning. Conners' Kiddie Continuous Performance Test (K-CPT) is the most popular well-established neuropsychological measurement but lacks event markers to clarify the heterogeneous behaviors among children. This study utilized a novel commercially available neuropsychological measure, the ΣCOG, which was more game-like and provided definite event markers of individual trial in the test. METHODS: Thirty-three older preschool children (14 were diagnosed with ADHD, mean age: 66.21 ± 5.48 months; 19 demonstrated typical development, mean age: 61.16 ± 8.11 months) were enrolled and underwent comprehensive medical and developmental evaluations. All participants underwent 2 versions of neuropsychological measures, including the K-CPT, Second Edition (K-CPT 2) and the ΣCOG, within a short interval. RESULTS: The study indicated the omissions and response time scores measured in this novel system correlated with clinical measurement of the behavioral scales in all participants and in the group with ADHD; additionally, associations with the traditional K-CPT 2 were observed in commissions and response time scores. Furthermore, this system provided a within-task behavioral analysis that identified the group differences in the specific trial regarding omission and commission errors. CONCLUSIONS: This innovative system is clinically feasible and can be further used as an alternative to the K-CPT 2 especially in research by revealing within-task event-related information analysis.

3.
Chemosphere ; 358: 142146, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38677604

RÉSUMÉ

Estradiol (E2), an endocrine disruptor, acts by mimicking or interfering with the normal physiological functions of natural hormones within organisms, leading to issues such as endocrine system disruption. Notably, seasonal fluctuations in environmental temperature may influence the degradation speed of estradiol (E2) in the natural environment, intensifying its potential health and ecological risks. Therefore, this study aims to explore how bacteria can degrade E2 under low-temperature conditions, unveiling their resistance mechanisms, with the goal of developing new strategies to mitigate the threat of E2 to health and ecological safety. In this paper, we found that Rhodococcus equi DSSKP-R-001 (R-001) can efficiently degrade E2 at 30 °C and 10 °C. Six genes in R-001 were shown to be involved in E2 degradation by heterologous expression at 30 °C. Among them, 17ß-HSD, KstD2, and KstD3, were also involved in E2 degradation at 10 °C; KstD was not previously known to degrade E2. RNA-seq was used to characterize differentially expressed genes (DEGs) to explore the stress response of R-001 to low-temperature environments to elucidate the strain's adaptation mechanism. At the low temperature, R-001 cells changed from a round spherical shape to a long rod or irregular shape with elevated unsaturated fatty acids and were consistent with the corresponding genetic changes. Many differentially expressed genes linked to the cold stress response were observed. R-001 was found to upregulate genes encoding cold shock proteins, fatty acid metabolism proteins, the ABC transport system, DNA damage repair, energy metabolism and transcriptional regulators. In this study, we demonstrated six E2 degradation genes in R-001 and found for the first time that E2 degradation genes have different expression characteristics at 30 °C and 10 °C. Linking R-001 to cold acclimation provides new insights and a mechanistic basis for the simultaneous degradation of E2 under cold stress in Rhodococcus adaptation.


Sujet(s)
Dépollution biologique de l'environnement , Basse température , Oestradiol , Rhodococcus , Rhodococcus/génétique , Rhodococcus/physiologie , Rhodococcus/métabolisme , Oestradiol/métabolisme , Perturbateurs endocriniens/toxicité , Stress physiologique/génétique , Régulation de l'expression des gènes bactériens , Expression des gènes/effets des médicaments et des substances chimiques
4.
Front Plant Sci ; 15: 1358673, 2024.
Article de Anglais | MEDLINE | ID: mdl-38410731

RÉSUMÉ

Cadmium (Cd) pollution severely affects plant growth and development, posing risks to human health throughout the food chain. Improved iron (Fe) nutrients could mitigate Cd toxicity in plants, but the regulatory network involving Cd and Fe interplay remains unresolved. Here, a transcription factor gene of alfalfa, MsbHLH115 was verified to respond to iron deficiency and Cd stress. Overexpression of MsbHLH115 enhanced tolerance to Cd stress, showing better growth and less ROS accumulation in Arabidopsis thaliana. Overexpression of MsbHLH115 significantly enhanced Fe and Zn accumulation and did not affect Cd, Mn, and Cu concentration in Arabidopsis. Further investigations revealed that MsbHLH115 up-regulated iron homeostasis regulation genes, ROS-related genes, and metal chelation and detoxification genes, contributing to attenuating Cd toxicity. Y1H, EMSA, and LUC assays confirmed the physical interaction between MsbHLH115 and E-box, which is present in the promoter regions of most of the above-mentioned iron homeostasis regulatory genes. The transient expression experiment showed that MsbHLH115 interacted with MsbHLH121pro. The results suggest that MsbHLH115 may directly regulate the iron-deficiency response system and indirectly regulate the metal detoxification response mechanism, thereby enhancing plant Cd tolerance. In summary, enhancing iron accumulation through transcription factor regulation holds promise for improving plant tolerance to Cd toxicity, and MsbHLH115 is a potential candidate for addressing Cd toxicity issues.

5.
J Sci Food Agric ; 104(9): 5089-5103, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38288873

RÉSUMÉ

BACKGROUND: Obesity is closely associated with lipid accumulation, inflammation and intestinal microbiota dysbiosis. Short- and long-chain type structured lipids (SLCTs) are kinds of low-calorie structured lipids and demonstrate anti-obesity and hypolipidemia bioactivity. The objective of this study is to investigate the potential effects of dietary supplementation of SLCTs rich in short-chain fatty acids and polyunsaturated fatty acids on high-fat-diet-induced obesity and gut microbiota modulation in C57BL/6J mice. RESULTS: Results showed that SLCTs supplementation ameliorated body weight, dyslipidemia, liver lipid accumulation, liver injury and systemic inflammation in obese mice. As expected, immunohistochemical analysis showed that SLCTs significantly increased the expression of proliferator-activated receptor alpha and decreased the expression of Toll-like receptor 4 in liver tissue. Furthermore, SLCTs supplementation significantly downregulated the expression level of liver inflammation-related genes while upregulating the expression level of liver lipid metabolism-related genes. Additionally, SLCTs supplementation markedly enhanced the diversity of gut microbiota, reduced the Firmicutes/Bacteroidetes ratio and increased the diversity and richness of beneficial intestinal microorganisms, such as Bacteroides, Lactobacillus, Lachnospiraceae NK4A136 group, Alloprevotella and Ruminococcaceae UCG-014. CONCLUSION: Our work suggested that SLCTs may have the potential to reduce obesity associated with a high-fat diet by regulating liver metabolism, inflammation and gut microbiota. © 2024 Society of Chemical Industry.


Sujet(s)
Alimentation riche en graisse , Compléments alimentaires , Microbiome gastro-intestinal , Inflammation , Métabolisme lipidique , Foie , Souris de lignée C57BL , Souris obèse , Obésité , Animaux , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Alimentation riche en graisse/effets indésirables , Obésité/métabolisme , Obésité/microbiologie , Obésité/diétothérapie , Souris , Foie/métabolisme , Mâle , Compléments alimentaires/analyse , Inflammation/métabolisme , Humains , Bactéries/classification , Bactéries/isolement et purification , Bactéries/génétique , Bactéries/métabolisme , Lipides , Acides gras volatils/métabolisme
6.
Biotechnol Biofuels Bioprod ; 17(1): 2, 2024 Jan 03.
Article de Anglais | MEDLINE | ID: mdl-38172947

RÉSUMÉ

Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE