Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
1.
Article de Anglais | MEDLINE | ID: mdl-19163937

RÉSUMÉ

The registration of tubular organs (pulmonary tracheobronchial tree or vasculature) of 3D medical images is critical in various clinical applications such as surgical planning and radiotherapy. In this paper, we present a novel method for tubular organs registration based on the automatically detected bifurcation points of the tubular organs. We first perform a 3D tubular organ segmentation method to extract the centerlines of tubular organs and radius estimation in both planning and respiration-correlated CT (RCCT) images. This segmentation method automatically detects the bifurcation points by applying Adaboost algorithm with specially designed filters. We then apply a rigid registration method which minimizes the least square error of the corresponding bifurcation points between the planning CT images and the respiration-correlated CT images. Our method has over 96% success rate for detecting bifurcation points.We present very promising results of our method applied to the registration of the planning and respiration-correlated CT images. On average, the mean distance and the root-mean-square error (RMSE) of the corresponding bifurcation points between the respiration-correlated images and the registered planning images are less than 2.7 mm.


Sujet(s)
Intelligence artificielle , Imagerie tridimensionnelle/méthodes , Poumon/imagerie diagnostique , Reconnaissance automatique des formes/méthodes , Interprétation d'images radiographiques assistée par ordinateur/méthodes , Technique de soustraction , Tomodensitométrie/méthodes , Algorithmes , Humains , Amélioration d'image radiographique/méthodes , Reproductibilité des résultats , Sensibilité et spécificité
2.
Article de Anglais | MEDLINE | ID: mdl-18051126

RÉSUMÉ

Significant research has been conducted in radiation beam gating technology to manage target and organ motions in radiotherapy treatment of cancer patients. As more and more on-board imagers are installed onto linear accelerators, fluoroscopic imaging becomes readily available at the radiation treatment stage. Thus, beam gating parameters, such as beam-on timing and beam-on window can be potentially determined by employing image registration between treatment planning CT images and fluoroscopic images. We propose a new registration method on deformable soft tissue between fluoroscopic images and DRR (Digitally Reconstructed Radiograph) images from planning CT images using active shape models. We present very promising results of our method applied to 30 clinical datasets. These preliminary results show that the method is very robust for the registration of deformable soft tissue. The proposed method can be used to determine beam-on timing and treatment window for radiation beam gating technology, and can potentially greatly improve radiation treatment quality.


Sujet(s)
Radioscopie/méthodes , Tumeurs du poumon/imagerie diagnostique , Tumeurs du poumon/radiothérapie , Planification de radiothérapie assistée par ordinateur/méthodes , Radiothérapie conformationnelle/méthodes , Technique de soustraction , Tomodensitométrie/méthodes , Algorithmes , Intelligence artificielle , Humains , Imagerie tridimensionnelle/méthodes , Amélioration d'image radiographique/méthodes , Interprétation d'images radiographiques assistée par ordinateur/méthodes , Radiothérapie assistée par ordinateur/méthodes , Reproductibilité des résultats , Sensibilité et spécificité
3.
Conf Proc IEEE Eng Med Biol Soc ; 2006: 3062-5, 2006.
Article de Anglais | MEDLINE | ID: mdl-17946543

RÉSUMÉ

Ground glass opacity (GGO) is defined as hazy increased attenuation within a lung that is not associated with obscured underlying vessels. Since pure (non-solid) or mixed (partially solid) GGO at the thin-section CT are more likely to be malignant than those with solid opacity, early detection and treatment of GGO can improve a prognosis of lung cancer. However, due to indistinct boundaries and inter-or intra-observer variation, consistent manual detection and segmentation of GGO have proved to be problematic. In this paper, we propose a novel method for automatic detection and segmentation of GGO from chest CT images. For GGO detection, we develop a classifier by boosting k-nearest neighbor (k-NN), whose distance measure is the Euclidean distance between the nonparametric density estimates of two regions. The detected GGO region is then automatically segmented by analyzing the 3D texture likelihood map of the region. We applied our method to clinical chest CT volumes containing 10 GGO nodules. The proposed method detected all of the 10 nodules with only one false positive nodule. We also present the statistical validation of the proposed classifier for automatic GGO detection as well as very promising results for automatic GGO segmentation. The proposed method provides a new powerful tool for automatic detection as well as accurate and reproducible segmentation of GGO.


Sujet(s)
Poumon/imagerie diagnostique , Interprétation d'images radiographiques assistée par ordinateur/méthodes , Tomodensitométrie/statistiques et données numériques , Génie biomédical , Humains , Imagerie tridimensionnelle/statistiques et données numériques , Fonctions de vraisemblance
4.
Article de Anglais | MEDLINE | ID: mdl-17354962

RÉSUMÉ

Ground Glass Opacity (GGO) is defined as hazy increased attenuation within a lung that is not associated with obscured underlying vessels. Since pure (nonsolid) or mixed (partially solid) GGO at the thin-section CT are more likely to be malignant than those with solid opacity, early detection and treatment of GGO can improve a prognosis of lung cancer. However, due to indistinct boundaries and inter- or intra-observer variation, consistent manual detection and segmentation of GGO have proved to be problematic. In this paper, we propose a novel method for automatic detection and segmentation of GGO from chest CT images. For GGO detection, we develop a classifier by boosting k-NN whose distance measure is the Euclidean distance between the nonparametric density estimates of two examples. The detected GGO region is then automatically segmented by analyzing the texture likelihood map of the region. We applied our method to clinical chest CT volumes containing 10 GGO nodules. The proposed method detected all of the 10 nodules with only one false positive nodule. We also present the statistical validation of the proposed classifier for GGO detection as well as very promising results for automatic GGO segmentation. The proposed method provides a new powerful tool for automatic detection as well as accurate and reproducible segmentation of GGO.


Sujet(s)
Algorithmes , Intelligence artificielle , Reconnaissance automatique des formes/méthodes , Interprétation d'images radiographiques assistée par ordinateur/méthodes , Radiographie thoracique/méthodes , Nodule pulmonaire solitaire/imagerie diagnostique , Humains , Imagerie tridimensionnelle/méthodes , Tumeurs du poumon/imagerie diagnostique , Amélioration d'image radiographique/méthodes , Reproductibilité des résultats , Sensibilité et spécificité , Technique de soustraction
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE