Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Plants (Basel) ; 11(3)2022 Feb 03.
Article de Anglais | MEDLINE | ID: mdl-35161403

RÉSUMÉ

Plant heterotrimeric G proteins have been shown to regulate the size of various organs. There are three types of Gγ subunits in plants: type A, consisting of a canonical Gγ domain; type B, possessing a plant-specific domain at the N-terminus of the Gγ domain; and type C, possessing a plant-specific domain at the C-terminal of the Gγ domain. There is one type A, one type B, and three type C of the five γ-subunits in the rice genome. In type C Gγ subunits, GS3, which controls grain size; DEP1, which controls plant height and panicle branching; and their homolog OsGGC2, which affects grain size, have been reported; however, the function of each gene, their interactions, and molecular mechanisms for the control of plant height have not yet been clarified. In this study, we generated loss-of-function mutants of DEP1 and OsGGC2, which have high homology and similar expression, and investigated their phenotypes. Since both dep1 and osggc2 mutants were dwarfed and the double mutants showed a synergistic phenotype, we concluded that both DEP1 and OsGGC2 are positive regulators of plant height and that their functions are redundant.

2.
Breed Sci ; 70(4): 456-461, 2020 Sep.
Article de Anglais | MEDLINE | ID: mdl-32968348

RÉSUMÉ

Grain size is one of the most important agricultural traits in rice. To increase grain yield, we screened a large grain mutant from mutants with the 'Koshihikari' background. As a result, we obtained a mutant, KEMS39, that has a large grain size and increased yield. Cultivation tests revealed that this mutant had improved lodging resistance with thicker internodes. Next-generation sequencing analysis revealed the presence of a 67 bp deletion in the GW2 mRNA, owing to a mutation in the 3' splice site of the sixth intron of the GW2 gene. To determine whether this mutation was responsible for the larger grain and thicker internodes, we performed gene editing and obtained a mutant with a 7 bp deletion, including this 3' splice site. As this gw2 mutant had large grains and thicker internodes, the causal gene of KEMS39 was determined as GW2. Thicker internodes are attributed to the pleiotropic effect of gw2 mutation. On the basis of these results, we conclude that gw2 mutation has the potential to be an important genetic resource with the ability to achieve a well-balanced and high-yielding effect that simultaneously improves grain productivity and lodging resistance.

3.
Int J Mol Sci ; 21(19)2020 Sep 23.
Article de Anglais | MEDLINE | ID: mdl-32977500

RÉSUMÉ

The plasma membrane regulates biological processes such as ion transport, signal transduction, endocytosis, and cell differentiation/proliferation. To understand the functional characteristics and organ specificity of plasma membranes, plasma membrane protein fractions from rice root, etiolated leaf, green leaf, developing leaf sheath, and flower were analyzed by proteomics. Among the proteins identified, 511 were commonly accumulated in the five organs, whereas 270, 132, 359, 146, and 149 proteins were specifically accumulated in the root, etiolated leaf, green leaf, developing leaf sheath, and developing flower, respectively. The principle component analysis revealed that the functions of the plasma membrane in the root was different from those of green and etiolated leaves and that the plasma membrane protein composition of the leaf sheath was similar to that of the flower, but not that of the green leaf. Functional classification revealed that the root plasma membrane has more transport-related proteins than the leaf plasma membrane. Furthermore, the leaf sheath and flower plasma membranes were found to be richer in proteins involved in signaling and cell function than the green leaf plasma membrane. To validate the proteomics data, immunoblot analysis was carried out, focusing on four heterotrimeric G protein subunits, Gα, Gß, Gγ1, and Gγ2. All subunits could be detected by both methods and, in particular, Gγ1 and Gγ2 required concentration by immunoprecipitation for mass spectrometry detection.


Sujet(s)
Fleurs/métabolisme , Régulation de l'expression des gènes végétaux , Oryza/métabolisme , Feuilles de plante/métabolisme , Protéines végétales/biosynthèse , Racines de plante/métabolisme , Fleurs/génétique , Oryza/génétique , Feuilles de plante/génétique , Protéines végétales/génétique , Racines de plante/génétique , Protéomique
4.
Int J Mol Sci ; 19(11)2018 Nov 14.
Article de Anglais | MEDLINE | ID: mdl-30441767

RÉSUMÉ

Heterotrimeric G proteins are important molecules for regulating plant architecture and transmitting external signals to intracellular target proteins in higher plants and mammals. The rice genome contains one canonical α subunit gene (RGA1), four extra-large GTP-binding protein genes (XLGs), one canonical ß subunit gene (RGB1), and five γ subunit genes (tentatively named RGG1, RGG2, RGG3/GS3/Mi/OsGGC1, RGG4/DEP1/DN1/OsGGC3, and RGG5/OsGGC2). RGG1 encodes the canonical γ subunit; RGG2 encodes the plant-specific type of γ subunit with additional amino acid residues at the N-terminus; and the remaining three γ subunit genes encode the atypical γ subunits with cysteine abundance at the C-terminus. We aimed to identify the RGG3/GS3/Mi/OsGGC1 gene product, Gγ3, in rice tissues using the anti-Gγ3 domain antibody. We also analyzed the truncated protein, Gγ3∆Cys, in the RGG3/GS3/Mi/OsGGC1 mutant, Mi, using the anti-Gγ3 domain antibody. Based on nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, the immunoprecipitated Gγ3 candidates were confirmed to be Gγ3. Similar to α (Gα) and ß subunits (Gß), Gγ3 was enriched in the plasma membrane fraction, and accumulated in the flower tissues. As RGG3/GS3/Mi/OsGGC1 mutants show the characteristic phenotype in flowers and consequently in seeds, the tissues that accumulated Gγ3 corresponded to the abnormal tissues observed in RGG3/GS3/Mi/OsGGC1 mutants.


Sujet(s)
Sous-unités gamma des protéines G/métabolisme , Oryza/métabolisme , Protéines végétales/métabolisme , Membrane cellulaire/métabolisme , Fleurs/métabolisme , Sous-unités gamma des protéines G/composition chimique , Sous-unités gamma des protéines G/génétique , Oryza/génétique , Protéines végétales/composition chimique , Protéines végétales/génétique , Graines/métabolisme
5.
Int J Mol Sci ; 19(11)2018 Nov 14.
Article de Anglais | MEDLINE | ID: mdl-30441812

RÉSUMÉ

Heterotrimeric G proteins are the molecule switch that transmits information from external signals to intracellular target proteins in mammals and yeast cells. In higher plants, heterotrimeric G proteins regulate plant architecture. Rice harbors one canonical α subunit gene (RGA1), four extra-large GTP-binding protein genes (XLGs), one canonical ß-subunit gene (RGB1), and five γ-subunit genes (tentatively designated RGG1, RGG2, RGG3/GS3/Mi/OsGGC1, RGG4/DEP1/DN1/qPE9-1/OsGGC3, and RGG5/OsGGC2) as components of the heterotrimeric G protein complex. Among the five γ-subunit genes, RGG1 encodes the canonical γ-subunit, RGG2 encodes a plant-specific type of γ-subunit with additional amino acid residues at the N-terminus, and the remaining three γ-subunit genes encode atypical γ-subunits with cysteine-rich C-termini. We characterized the RGG4/DEP1/DN1/qPE9-1/OsGGC3 gene product Gγ4 in the wild type (WT) and truncated protein Gγ4∆Cys in the RGG4/DEP1/DN1/qPE9-1/OsGGC3 mutant, Dn1-1, as littele information regarding the native Gγ4 and Gγ4∆Cys proteins is currently available. Based on liquid chromatography-tandem mass spectrometry analysis, immunoprecipitated Gγ4 candidates were confirmed as actual Gγ4. Similar to α-(Gα) and ß-subunits (Gß), Gγ4 was enriched in the plasma membrane fraction and accumulated in the developing leaf sheath. As RGG4/DEP1/DN1/qPE9-1/OsGGC3 mutants exhibited dwarfism, tissues that accumulated Gγ4 corresponded to the abnormal tissues observed in RGG4/DEP1/DN1/qPE9-1/OsGGC3 mutants.


Sujet(s)
Sous-unités gamma des protéines G/génétique , Oryza/génétique , Protéines végétales/génétique , Membrane cellulaire/métabolisme , Sous-unités gamma des protéines G/composition chimique , Sous-unités gamma des protéines G/métabolisme , Oryza/métabolisme , Feuilles de plante/métabolisme , Protéines végétales/composition chimique , Protéines végétales/métabolisme
6.
Breed Sci ; 68(3): 336-342, 2018 Jun.
Article de Anglais | MEDLINE | ID: mdl-30100800

RÉSUMÉ

High-temperature stress during the ripening stage leads to quality deterioration due to an increase in chalky grains in brown rice (Oryza sativa L.). In a previous study, we identified a QTL for Appearance quality of brown rice 1 (Apq1) using chromosome segment substitution lines of the indica cultivar 'Habataki' in the japonica cultivar 'Koshihikari' background and narrowed down the locus to a 48-kb region on chromosome 7. To verify the function and mechanisms of this QTL in grain appearance, in this study, we fine-mapped the gene and conducted high-temperature tolerance tests. As a result of the genetic mapping, we narrowed down the candidate region of Apq1 to a 19.4-kb region including three predicted genes. Among these, the temporal expression pattern of sucrose synthase 3 (Sus3) corresponded well with the high temperature-sensitive period during ripening, and expression of the 'Habataki' allele of Sus3 was increased under high-temperature condition. In addition, we transformed the 'Habataki' Sus3 gene into 'Nipponbare', and the transformants obtained high-temperature tolerance. Therefore, we conclude that the causal gene underlying the QTL Apq1 is the thermo-responsive Sus3 allele, and the increase in Sus3 expression under high-temperature condition during ripening leads to high-temperature tolerance in rice.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE