Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 33
Filtrer
1.
Research (Wash D C) ; 7: 0451, 2024.
Article de Anglais | MEDLINE | ID: mdl-39193132

RÉSUMÉ

The potential of circular RNAs (circRNAs) as biomarkers and therapeutic targets is becoming increasingly evident, yet their roles in cardiac regeneration and myocardial renewal remain largely unexplored. Here, we investigated the function of circIGF1R and related mechanisms in cardiac regeneration. Through analysis of circRNA sequencing data from neonatal and adult cardiomyocytes, circRNAs associated with regeneration were identified. Our data showed that circIGF1R expression was high in neonatal hearts, decreased with postnatal maturation, and up-regulated after cardiac injury. The elevation was validated in patients diagnosed with acute myocardial infarction (MI) within 1 week. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and myocardial tissue from mice after apical resection and MI, we observed that circIGF1R overexpression enhanced cardiomyocyte proliferation, reduced apoptosis, and mitigated cardiac dysfunction and fibrosis, while circIGF1R knockdown impeded endogenous cardiac renewal. Mechanistically, we identified circIGF1R binding proteins through circRNA precipitation followed by mass spectrometry. RNA pull-down Western blot and RNA immunoprecipitation demonstrated that circIGF1R directly interacted with DDX5 and augmented its protein level by suppressing ubiquitin-dependent degradation. This subsequently triggered the ß-catenin signaling pathway, leading to the transcriptional activation of cyclin D1 and c-Myc. The roles of circIGF1R and DDX5 in cardiac regeneration were further substantiated through site-directed mutagenesis and rescue experiments. In conclusion, our study highlights the pivotal role of circIGF1R in facilitating heart regeneration and repair after ischemic insults. The circIGF1R/DDX5/ß-catenin axis emerges as a novel therapeutic target for enhancing myocardial repair after MI, offering promising avenues for the development of regenerative therapies.

2.
Phytomedicine ; 134: 155959, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-39178682

RÉSUMÉ

BACKGROUND: ß,ß-Dimethylacrylalkannin (DMAKN), a natural naphthoquinone found in Zicao, a traditional Chinese medicine (TCM), serves as the designated quantitative marker in the Chinese Pharmacopoeia. Despite its established role in assessing Zicao quality, DMAKN's biological potential remains underexplored in research. METHODS: We investigated DMAKN's involvement in Zicao's anti-hepatocellular carcinoma (HCC) properties using a combination of HPLC content analysis and comprehensive bioinformatics. Subsequently, both in vitro and in vivo experiments were conducted to evaluate DMAKN's efficacy against HCC. Mechanistic investigations focused on elucidating DMAKN's impact on cell cycle regulation and induction of cell death. RESULTS: Integrated HPLC analysis and bioinformatics identified DMAKN as the primary active compound responsible for Zicao's anti-HCC activity. In vitro and in vivo studies confirmed DMAKN's potent efficacy against HCC. Notably, DMAKN demonstrated dual effects on HCC cells: inhibiting proliferation at lower doses and inducing rapid cell death at higher doses. Mechanistic insights revealed that low-dose DMAKN induced G2/M phase cell cycle arrest through modulation of CDK1 and Cdc25C phosphorylation, while high-dose DMAKN triggered necrosis. Importantly, high-dose DMAKN caused a sharp increase in intracellular ROS levels in a short time, while low-dose DMAKN gradually increased ROS levels over a long period. Additionally, low-dose DMAKN-induced ROS activated the JNK pathway, crucial for cell cycle arrest, whereas high-dose DMAKN-induced necrosis was ROS-dependent but JNK-independent. CONCLUSION: This study underscores DMAKN's pivotal role as the principal anti-HCC compound in Zicao, delineating its differential effects and underlying mechanisms. These results demonstrate the potential of DMAKN as a therapeutic agent for the treatment of HCC, providing important information for further study and advancement in cancer therapy.


Sujet(s)
Carcinome hépatocellulaire , Points de contrôle du cycle cellulaire , Tumeurs du foie , Nécrose , Carcinome hépatocellulaire/traitement médicamenteux , Carcinome hépatocellulaire/anatomopathologie , Tumeurs du foie/traitement médicamenteux , Humains , Animaux , Points de contrôle du cycle cellulaire/effets des médicaments et des substances chimiques , Nécrose/traitement médicamenteux , Naphtoquinones/pharmacologie , Médicaments issus de plantes chinoises/pharmacologie , Médicaments issus de plantes chinoises/composition chimique , Lignée cellulaire tumorale , Antinéoplasiques d'origine végétale/pharmacologie , Souris nude , Souris , Souris de lignée BALB C , Espèces réactives de l'oxygène/métabolisme , Prolifération cellulaire/effets des médicaments et des substances chimiques , Mâle , Cellules HepG2 , cdc25 Phosphatases/métabolisme , Apoptose/effets des médicaments et des substances chimiques , Protéine-kinase CDC2
3.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3725-3735, 2024 Jul.
Article de Chinois | MEDLINE | ID: mdl-39099347

RÉSUMÉ

Using Origin2022Pro, PAST4.09, GraphPad, and ArcGIS, this study analyzed the big data of the fourth national survey of traditional Chinese medicine resources in Jilin province from five dimensions: differences in resource quantity, taxonomic group, family, and genus, regional distribution, and spatiotemporal distribution, aiming to fully elucidate the biodiversity of medicinal plants in Jilin province. The results indicated that 2 241 species of medicinal plants existed in Jilin province, belonging to 881 genera of 243 families, with 20 dominant families and 3 dominant genera. There were 1 901 species of medicinal plants(belonging to 778 genera of 227 families) in the eastern mountainous region, 1 503 species(belonging to 690 genera of 225 families) in the mid-mountainous areas of the central mountainous region, and 811 species(belonging to 436 genera of 136 families) in the western plain region. The biodiversity of medicinal plants in Jilin province was high and presented a trend of high in the east and low in the west. The medicinal plant resources were mainly concentrated in the eastern mountainous region, and the number of medicinal plant groups had significant diffe-rences between regions, following the trend of western region > central region > eastern region. The species richness was in the order of eastern region > western region > central region. The species diversity structure in the central region was similar to that in the eastern and western regions, while it was significantly different between the western and eastern regions. Compared with the third national survey of traditional Chinese medicine resources, the fourth survey showed an increase of 1 417 species, a decrease of 580 species, and 824 common species, indicating significant changes in the biodiversity of medicinal plants in Jilin province. The reasons for these changes need to be further explored. This article elucidates the background and biodiversity changes of medicinal plant resources in Jilin province, laying a foundation for the protection, utilization, and industrial development of traditional Chinese medicine resources in Jilin province.


Sujet(s)
Biodiversité , Médecine traditionnelle chinoise , Plantes médicinales , Plantes médicinales/composition chimique , Plantes médicinales/classification , Plantes médicinales/croissance et développement , Chine , Enquêtes et questionnaires
4.
Commun Biol ; 7(1): 795, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38951640

RÉSUMÉ

The peroxisome is a versatile organelle that performs diverse metabolic functions. PEX3, a critical regulator of the peroxisome, participates in various biological processes associated with the peroxisome. Whether PEX3 is involved in peroxisome-related redox homeostasis and myocardial regenerative repair remains elusive. We investigate that cardiomyocyte-specific PEX3 knockout (Pex3-KO) results in an imbalance of redox homeostasis and disrupts the endogenous proliferation/development at different times and spatial locations. Using Pex3-KO mice and myocardium-targeted intervention approaches, the effects of PEX3 on myocardial regenerative repair during both physiological and pathological stages are explored. Mechanistically, lipid metabolomics reveals that PEX3 promotes myocardial regenerative repair by affecting plasmalogen metabolism. Further, we find that PEX3-regulated plasmalogen activates the AKT/GSK3ß signaling pathway via the plasma membrane localization of ITGB3. Our study indicates that PEX3 may represent a novel therapeutic target for myocardial regenerative repair following injury.


Sujet(s)
Membrane cellulaire , Intégrine bêta3 , Souris knockout , Régénération , Animaux , Mâle , Souris , Membrane cellulaire/métabolisme , Prolifération cellulaire , Lésions traumatiques du coeur/métabolisme , Lésions traumatiques du coeur/anatomopathologie , Lésions traumatiques du coeur/génétique , Intégrine bêta3/métabolisme , Intégrine bêta3/génétique , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Souris de lignée C57BL , Myocarde/métabolisme , Myocarde/anatomopathologie , Myocytes cardiaques/métabolisme , Acétalphosphatides/métabolisme , Transduction du signal
5.
J Am Heart Assoc ; 13(13): e034805, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38934866

RÉSUMÉ

BACKGROUND: The regenerative capacity of the adult mammalian hearts is limited. Numerous studies have explored mechanisms of adult cardiomyocyte cell-cycle withdrawal. This translational study evaluated the effects and underlying mechanism of rhCHK1 (recombinant human checkpoint kinase 1) on the survival and proliferation of cardiomyocyte and myocardial repair after ischemia/reperfusion injury in swine. METHODS AND RESULTS: Intramyocardial injection of rhCHK1 protein (1 mg/kg) encapsulated in hydrogel stimulated cardiomyocyte proliferation and reduced cardiac inflammation response at 3 days after ischemia/reperfusion injury, improved cardiac function and attenuated ventricular remodeling, and reduced the infarct area at 28 days after ischemia/reperfusion injury. Mechanistically, multiomics sequencing analysis demonstrated enrichment of glycolysis and mTOR (mammalian target of rapamycin) pathways after rhCHK1 treatment. Co-Immunoprecipitation (Co-IP) experiments and protein docking prediction showed that CHK1 (checkpoint kinase 1) directly bound to and activated the Serine 37 (S37) and Tyrosine 105 (Y105) sites of PKM2 (pyruvate kinase isoform M2) to promote metabolic reprogramming. We further constructed plasmids that knocked out different CHK1 and PKM2 amino acid domains and transfected them into Human Embryonic Kidney 293T (HEK293T) cells for CO-IP experiments. Results showed that the 1-265 domain of CHK1 directly binds to the 157-400 amino acids of PKM2. Furthermore, hiPSC-CM (human iPS cell-derived cardiomyocyte) in vitro and in vivo experiments both demonstrated that CHK1 stimulated cardiomyocytes renewal and cardiac repair by activating PKM2 C-domain-mediated cardiac metabolic reprogramming. CONCLUSIONS: This study demonstrates that the 1-265 amino acid domain of CHK1 binds to the 157-400 domain of PKM2 and activates PKM2-mediated metabolic reprogramming to promote cardiomyocyte proliferation and myocardial repair after ischemia/reperfusion injury in adult pigs.


Sujet(s)
Prolifération cellulaire , Checkpoint kinase 1 , Modèles animaux de maladie humaine , Lésion de reperfusion myocardique , Myocytes cardiaques , Animaux , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Lésion de reperfusion myocardique/métabolisme , Lésion de reperfusion myocardique/anatomopathologie , Lésion de reperfusion myocardique/enzymologie , Lésion de reperfusion myocardique/génétique , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/génétique , Humains , Pyruvate kinase/métabolisme , Pyruvate kinase/génétique , Cellules HEK293 , Suidae , Reprogrammation cellulaire , Thyroid Hormone-Binding Proteins , Régénération , Liaison aux protéines , Sus scrofa , Remodelage ventriculaire/physiologie , Protéines recombinantes/métabolisme , Protéines recombinantes/pharmacologie , Métabolisme énergétique/effets des médicaments et des substances chimiques , Hormones thyroïdiennes/métabolisme , Metabolic Reprogramming
6.
Top Stroke Rehabil ; : 1-16, 2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38566465

RÉSUMÉ

OBJECTIVES: The purpose of this study was to provide a comprehensive overview of the prevalence, measurement tools, influencing factors, and interventions for fear of falling (FOF) in stroke survivors. METHODS: A PRISMA-guided systematic literature review was conducted. PubMed, EMBASE, Cochrane, and Web of Science were systematically searched. The search time was up to February 2023. All observational and experimental studies investigating FOF in stroke patients were included. The assessment tool of the Joanna Briggs Institute was used to assess the quality of the included studies and the risk of bias assessment. (PROSPERO: CRD42023412522). RESULT: A total of 25 observational studies and 10 experimental studies were included. The overall quality of the included studies was "low" to "good." The most common tool used to measure the FOF was the Falls Efficacy Scale-International (FES-I). The prevalence of FOF was 42%- 93.8%. Stroke survivors with physical impairments have the highest prevalence of FOF. The main risk factors for the development of FOF in stroke survivors were female gender, use of assistive devices, balance, limb dysfunction, and functional mobility. The combination of cognitive behavioral and exercise interventions is the most effective strategy. CONCLUSIONS: This review suggests that the prevalence of FOF in stroke survivors is high and that understanding the factors associated with FOF in stroke patients can help develop multifactorial prevention strategies to reduce FOF and improve quality of life. In addition, a uniform FOF measurement tool should be used to better assess the effectiveness of interventions for stroke survivors. ETHICS APPROVAL: PROSPERO registration (CRD42023412522).

7.
Cell Death Discov ; 10(1): 134, 2024 Mar 12.
Article de Anglais | MEDLINE | ID: mdl-38472168

RÉSUMÉ

Endoplasmic reticulum (ER) stress can trigger various cell death mechanisms beyond apoptosis, providing promise in cancer treatment. Oncosis, characterized by cellular swelling and increased membrane permeability, represents a non-apoptotic form of cell death. In our study, we discovered that Arnicolide D (AD), a natural sesquiterpene lactone compound, induces ER stress-mediated oncosis in hepatocellular carcinoma (HCC) cells, and this process is reactive oxygen species (ROS)-dependent. Furthermore, we identified the activation of the PERK-eIF2α-ATF4-CHOP pathway during ER stress as a pivotal factor in AD-induced oncosis. Notably, the protein synthesis inhibitor cycloheximide (CHX) was found to effectively reverse AD-induced oncosis, suggesting ATF4 and CHOP may hold crucial roles in the induction of oncosis by AD. These proteins play a vital part in promoting protein synthesis during ER stress, ultimately leading to cell death. Subsequent studies, in where we individually or simultaneously knocked down ATF4 and CHOP in HCC cells, provided further confirmation of their indispensable roles in AD-induced oncosis. Moreover, additional animal experiments not only substantiated AD's ability to inhibit HCC tumor growth but also solidified the essential role of ER stress-mediated and ROS-dependent oncosis in AD's therapeutic potential. In summary, our research findings strongly indicate that AD holds promise as a therapeutic agent for HCC by its ability to induce oncosis.

8.
Arch Toxicol ; 97(12): 3209-3226, 2023 12.
Article de Anglais | MEDLINE | ID: mdl-37798514

RÉSUMÉ

Administration of CHK1-targeted anticancer therapies is associated with an increased cumulative risk of cardiac complications, which is further amplified when combined with gemcitabine. However, the underlying mechanisms remain elusive. In this study, we generated hiPSC-CMs and murine models to elucidate the mechanisms underlying CHK1 inhibition combined with gemcitabine-induced cardiotoxicity and identify potential targets for cardioprotection. Mice were intraperitoneally injected with 25 mg/kg CHK1 inhibitor AZD7762 and 20 mg/kg gemcitabine for 3 weeks. hiPSC-CMs and NMCMs were incubated with 0.5 uM AZD7762 and 0.1 uM gemcitabine for 24 h. Both pharmacological inhibition or genetic deletion of CHK1 and administration of gemcitabine induced mtROS overproduction and pyroptosis in cardiomyocytes by disrupting mitochondrial respiration, ultimately causing heart atrophy and cardiac dysfunction in mice. These toxic effects were further exacerbated with combination administration. Using mitochondria-targeting sequence-directed vectors to overexpress CHK1 in cardiomyocyte (CM) mitochondria, we identified the localization of CHK1 in CM mitochondria and its crucial role in maintaining mitochondrial redox homeostasis for the first time. Mitochondrial CHK1 function loss mediated the cardiotoxicity induced by AZD7762 and CHK1-knockout. Mechanistically, mitochondrial CHK1 directly phosphorylates SIRT3 and promotes its expression within mitochondria. On the contrary, both AZD7762 or CHK1-knockout and gemcitabine decreased mitochondrial SIRT3 abundance, thus resulting in respiration dysfunction. Further hiPSC-CMs and mice experiments demonstrated that SIRT3 overexpression maintained mitochondrial function while alleviating CM pyroptosis, and thereby improving mice cardiac function. In summary, our results suggest that targeting SIRT3 could represent a novel therapeutic approach for clinical prevention and treatment of cardiotoxicity induced by CHK1 inhibition and gemcitabine.


Sujet(s)
Checkpoint kinase 1 , Cellules souches pluripotentes induites , Sirtuine-3 , Animaux , Souris , Cardiotoxicité/métabolisme , Gemcitabine , Homéostasie , Cellules souches pluripotentes induites/métabolisme , Mitochondries/métabolisme , Myocytes cardiaques , Oxydoréduction , Sirtuine-3/génétique , Checkpoint kinase 1/métabolisme
9.
Medicina (Kaunas) ; 59(4)2023 Apr 14.
Article de Anglais | MEDLINE | ID: mdl-37109722

RÉSUMÉ

Background: Children with congenital heart disease (CHD) have impaired pulmonary function both before and after surgery; therefore, pulmonary function assessments are important and should be performed both before and after open-heart surgery. This study aimed to compare pulmonary function between variant pediatric CHD types after open-heart surgery via spirometry. Methods: In this retrospective study, the data for forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), and the ratio between FEV1 and FVC (FEV1/FVC) were collected from patients with CHD who underwent conventional spirometry between 2015 and 2017. Results: A total of 86 patients (55 males and 31 females, with a mean age of 13.24 ± 3.32 years) were enrolled in our study. The diagnosis of CHD included 27.9% with atrial septal defects, 19.8% with ventricular septal defects, 26.7% with tetralogy of Fallot, 7.0% with transposition of the great arteries, and 46.5% with other diagnoses. Abnormal lung function was identified by spirometry assessments after surgery. Spirometry was abnormal in 54.70% of patients: obstructive type in 29.06% of patients, restrictive type in 19.76% of patients, and mixed type in 5.81% of patients. More abnormal findings were found in patients who received the Fontan procedure (80.00% vs. 35.80%, p = 0.048). Conclusions: Developing novel therapies to optimize pulmonary function will be critical for improving clinical outcomes.


Sujet(s)
Cardiopathies congénitales , Transposition des gros vaisseaux , Mâle , Femelle , Humains , Enfant , Adolescent , Études rétrospectives , Spirométrie/méthodes , Poumon , Cardiopathies congénitales/diagnostic
10.
Br J Pharmacol ; 180(10): 1339-1361, 2023 05.
Article de Anglais | MEDLINE | ID: mdl-36521846

RÉSUMÉ

BACKGROUND AND PURPOSE: Atopic dermatitis is a common chronic pruritic inflammatory disease of the skin involving neuro-immune communication. Neuronal mechanism-based therapeutic treatments remain lacking. We investigated the efficacy of intravenous lidocaine therapy on atopic dermatitis and the underlying neuro-immune mechanism. EXPERIMENTAL APPROACH: Pharmacological intervention, immunofluorescence, RNA-sequencing, genetic modification and immunoassay were performed to dissect the neuro-immune basis of itch and inflammation in atopic dermatitis-like mouse model and in patients. KEY RESULTS: Lidocaine alleviated skin lesions and itch in both atopic dermatitis patients and calcipotriol (MC903)-induced atopic dermatitis model by blocking subpopulation of sensory neurons. QX-314, a charged NaV blocker that enters through pathologically activated large-pore ion channels and selectivity inhibits a subpopulation of sensory neurons, has the same effects as lidocaine in atopic dermatitis model. Genetic silencing NaV 1.8-expressing sensory neurons was sufficient to restrict cutaneous inflammation and itch in the atopic dermatitis model. However, pharmacological blockade of TRPV1-positive nociceptors only abolished persistent itch but did not affect skin inflammation in the atopic dermatitis model, indicating a difference between sensory neuronal modulation of skin inflammation and itch. Inhibition of activity-dependent release of calcitonin gene-related peptide (CGRP) from sensory neurons by lidocaine largely accounts for the therapeutic effect of lidocaine in the atopic dermatitis model. CONCLUSION AND IMPLICATIONS: NaV 1.8+ sensory neurons play a critical role in pathogenesis of atopic dermatitis and lidocaine is a potential anti-inflammatory and anti-pruritic agent for atopic dermatitis. A dissociable difference for sensory neuronal modulation of skin inflammation and itch contributes to further understanding of pathogenesis in atopic dermatitis.


Sujet(s)
Eczéma atopique , Souris , Animaux , Eczéma atopique/traitement médicamenteux , Eczéma atopique/anatomopathologie , Prurit/traitement médicamenteux , Peau/anatomopathologie , Inflammation/anatomopathologie , Cellules réceptrices sensorielles
11.
Mol Microbiol ; 119(1): 126-142, 2023 01.
Article de Anglais | MEDLINE | ID: mdl-36537557

RÉSUMÉ

In dimorphic fungi, the yeast-to-filament transition critical for cell survival under nutrient starvation is controlled by both activators and repressors. However, very few filamentation repressors are known. Here we report that, in the dimorphic yeast Yarrowia lipolytica, the conserved transcription factor YlNrg1 plays a minor role whereas Fts1, a newly identified Zn(II)2 Cys6 zinc cluster transcription factor, plays a key role in filamentation repression. FTS1 deletion caused hyperfilamentation whereas Fts1 overexpression drastically reduced filamentation. The expression of FTS1 is downregulated substantially during the yeast-to-filament transition. Transcriptome sequencing revealed that Fts1 represses 401 genes, including the filamentation-activating transcription factor genes MHY1, YlAZF1, and YlWOR4 and key cell wall protein genes. Tup1-Ssn6, a general transcriptional corepressor, is involved in the repression of many cellular functions in fungi. We show that both YlTup1 and YlSsn6 strongly repress filamentation in Y. lipolytica. YlTup1 and YlSsn6 together repress 1383 genes, including a large number of transcription factor and cell wall protein genes, which overlap substantially with Fts1-repressed genes. Fts1 interacts with both YlTup1 and YlSsn6, and LexA-Fts1 fusion represses a lexAop-promoter-lacZ reporter in a Tup1-Ssn6-dependent manner. Our findings suggest that Fts1 functions as a transcriptional repressor, directing the repression of target genes through the Tup1-Ssn6 corepressor.


Sujet(s)
Yarrowia , Protéines corépressives/génétique , Protéines corépressives/métabolisme , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Régulation de l'expression des gènes fongiques/génétique , Régions promotrices (génétique) , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Yarrowia/génétique , Yarrowia/métabolisme
12.
Cancer Drug Resist ; 6(4): 729-747, 2023.
Article de Anglais | MEDLINE | ID: mdl-38239395

RÉSUMÉ

The induction of cell death is recognized as a potent strategy for cancer treatment. Apoptosis is an extensively studied form of cell death, and multiple anticancer drugs exert their therapeutic effects by inducing it. Nonetheless, apoptosis evasion is a hallmark of cancer, rendering cancer cells resistant to chemotherapy drugs. Consequently, there is a growing interest in exploring novel non-apoptotic forms of cell death, such as ferroptosis, necroptosis, pyroptosis, and paraptosis. Natural compounds with anticancer properties have garnered significant attention due to their advantages, including a reduced risk of drug resistance. Over the past two decades, numerous natural compounds have been discovered to exert anticancer and anti-resistance effects by triggering these four non-apoptotic cell death mechanisms. This review primarily focuses on these four non-apoptotic cell death mechanisms and their recent advancements in overcoming drug resistance in cancer treatment. Meanwhile, it highlights the role of natural compounds in effectively addressing cancer drug resistance through the induction of these forms of non-apoptotic cell death.

13.
J Biomed Sci ; 29(1): 103, 2022 Dec 02.
Article de Anglais | MEDLINE | ID: mdl-36457117

RÉSUMÉ

BACKGROUND: Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1 (TIMP1), an inflammatory cytokine, under serum-depleted conditions which leads to suppression of lung cancer cell metastasis has been reported. Starvation is also a stimulus of autophagic activity. Herein, we reveal that starvation activates Rab37 and induces autophagy. METHODS: We used an overexpression/knockdown system to determine the relationship between autophagy and Rab37 in vitro and in vivo. The autophagy activity was detected by immunoblotting, transmission electron microscope, autophagosome purification, and immunofluorescence under the confocal microscope. Lung-to-lung metastasis mouse model was used to clarify the role of autophagy and Rab37 in lung cancer. Clinical lung cancer patient specimens and an online big database were analyzed. RESULTS: Initially, we demonstrated that active-form Rab37 increased LC3-II protein level (the marker of autophagosome) and TIMP1 secretion. Accordingly, silencing of Rab37 gene expression alleviated Rab37 and LC3-II levels as well as TIMP1 secretion, and induction of autophagy could not increase TIMP1 exocytosis under such conditions. Moreover, silencing the Atg5 or Atg7 gene of lung cancer cells harboring active-mutant Rab37 (Q89L) led to decreased autophagy activity and TIMP1 secretion. In the lung-to-lung metastasis mouse model, increased TIMP1 expression accompanied by amiodarone-induced autophagy led to decreased tumor nodules and cancer cell metastasis. These phenomena were reversed by silencing the Atg5 or Atg7 gene. Notably, increasing autophagy activity alone showed no effect on TIMP1 secretion under either Rab37 or Sec22b silencing conditions. We further detected colocalization of LC3 with either Rab37 or TIMP1, identified Rab37 and Sec22b proteins in the purified autophagosomes of the lung cancer cells harboring the active-form Rab37 gene, and confirmed that these proteins are involved in the secretion of TIMP1. We reveal that autophagic activity was significantly lower in the tumors compared to the non-tumor parts and was associated with the overall lung cancer patient survival rate. CONCLUSIONS: We are the first to report that autophagy plays a promoting role in TIMP1 secretion and metastasis in a Rab37-dependent manner in lung cancer cells and the lung-to-lung mouse model.


Sujet(s)
Tumeurs du poumon , Inhibiteur tissulaire de métalloprotéinase-1 , Protéines G rab , Animaux , Souris , Autophagosomes , Autophagie/génétique , Modèles animaux de maladie humaine , Exocytose , Tumeurs du poumon/génétique , Inhibiteur tissulaire de métalloprotéinase-1/génétique , Protéines G rab/génétique
14.
mSphere ; 7(6): e0045022, 2022 12 21.
Article de Anglais | MEDLINE | ID: mdl-36409080

RÉSUMÉ

The yeast-to-filament transition is an important cellular response to environmental stimulations in dimorphic fungi. In addition to activators, there are repressors in the cells to prevent filament formation, which is important to keep the cells in the yeast form when filamentation is not necessary. However, very few repressors of filamentation are known so far. Here, we identify a novel repressor of filamentation in the dimorphic yeast Yarrowia lipolytica, Fts2, which is a C2H2-type zinc finger transcription factor. We show that fts2Δ cells exhibited increased filamentation under mild filament-inducing conditions and formed filaments under non-filament-inducing conditions. We also show that Fts2 interacts with YlSsn6, component of the Tup1-Ssn6 transcriptional corepressor, and Fts2-LexA represses a lexAop-PYlACT1-lacZ reporter in a Tup1-Ssn6-dependent manner, suggesting that Fts2 has transcriptional repressor activity and represses gene expression via Tup1-Ssn6. In addition, we show that Fts2 represses a large number of cell wall protein genes and transcription factor genes, some of which are implicated in the filamentation response. Interestingly, about two-thirds of Fts2-repressed genes are also repressed by Tup1-Ssn6, suggesting that Fts2 may repress the bulk of its target genes via Tup1-Ssn6. Lastly, we show that Fts2 expression is downregulated in response to alkaline pH and the relief of negative control by Fts2 facilitates the induction of filamentation by alkaline pH. IMPORTANCE The repressors of filamentation are important negative regulators of the yeast-to-filament transition. However, except in Candida albicans, very few repressors of filamentation are known in dimorphic fungi. More importantly, how they repress filamentation is often not clear. In this paper, we report a novel repressor of filamentation in Y. lipolytica. Fts2 is not closely related in amino acid sequence to CaNrg1 and Rfg1, two major repressors of filamentation in C. albicans, yet it represses gene expression via the transcriptional corepressor Tup1-Ssn6, similar to CaNrg1 and Rfg1. Using transcriptome sequencing, we determined the whole set of genes regulated by Fts2 and identified the major targets of Fts2 repression, which provide clues to the mechanism by which Fts2 represses filamentation. Our results have important implications for understanding the negative control of the yeast-to-filament transition in dimorphic fungi.


Sujet(s)
Facteurs de transcription , Yarrowia , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Yarrowia/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de répression/génétique , Protéines de répression/métabolisme , Protéines fongiques/métabolisme , Candida albicans/génétique , Doigts de zinc , Protéines corépressives
15.
Biomater Adv ; 142: 213140, 2022 Nov.
Article de Anglais | MEDLINE | ID: mdl-36228507

RÉSUMÉ

Percutaneous coronary intervention (PCI) is the mainstream treatment to widen narrowed or obstructed coronary arteries due to pathological conditions. However, the post-operational neointimal hyperplasia occurs because of endothelium denudation during surgical procedures and the following inflammation. MicroRNAs (miRs) are new therapeutics of great potential for cardiovascular diseases. However, miRs easily degrade in vivo. A vehicle that can maintain their bioactivities and extend their retention at the site of delivery is prerequisite for miRs to play their roles as therapeutic reagents. Here, we reported the use of the Laponite hydrogels to deliver miR-22 that are modulators of phenotypes of smooth muscle cells (SMCs). The Laponite hydrogels allow a homogenous distribution of miR-22 within the gels, which had the capacity to transfect SMCs in vitro. Upon the injection of the miR-22 incorporated in the Laponite hydrogels in vivo, miR-22 could be well retained surrounding arteries for at least 7 days. Moreover, the miR-22 loading Laponite hydrogels inhibited the neointimal formation, reduced the infiltration of the macrophages, and reversed the adverse vascular ECM remodeling after the balloon-induced vascular injuries by upregulation of miR-22 and downregulation of its target genes methyl-CpG binding protein 2 (MECP2). The application of the Laponite hydrogels for miR local delivery may offer a novel strategy to treat cardiovascular diseases.


Sujet(s)
Maladies cardiovasculaires , microARN , Intervention coronarienne percutanée , Lésions du système vasculaire , Rats , Animaux , Hyperplasie/métabolisme , Muscles lisses vasculaires/traumatismes , Lésions du système vasculaire/métabolisme , Hydrogels/métabolisme , Maladies cardiovasculaires/métabolisme , Prolifération cellulaire , Rat Sprague-Dawley , Cellules cultivées , Néointima/génétique , microARN/génétique , Remodelage vasculaire
16.
World J Clin Cases ; 10(19): 6626-6635, 2022 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-35979290

RÉSUMÉ

BACKGROUND: Extramedullary hematopoiesis rarely occurs within the liver alone, and is easily misdiagnosed. The radiological literature on this disease is exclusively case reports. There is a paucity of literature on the role of magnetic resonance imaging (MRI). The most common imaging modalities used are computed tomography and ultrasound. This report aims to provide more data on the appearance of extramedullary hematopoiesis using MRI to help radiologists establish the diagnosis. CASE SUMMARY: Three patients (one male and two females) were incidentally found to have a hepatic mass or nodule, without hepatomegaly or splenomegaly. Laboratory tests including liver function, serum hepatic tumor markers, and hepatitis serologic markers were normal. On MRI scans, all lesions showed lower signal intensity on in-phase images than on out-phase images. One case showed changes in signal intensity on T2 weighted images (WI) and diffusion WI, which shifted from hyperintensity to hypointensity with size enlargement between two rounds of imaging examination. These lesions exhibited different enhancement patterns on dynamic contrast enhancement series. CONCLUSION: The MRI signal change and in-/out-phase image might provide useful information and help radiologists establish the diagnosis of intrahepatic extramedullary hematopoiesis.

17.
Microbiol Spectr ; 10(2): e0048322, 2022 04 27.
Article de Anglais | MEDLINE | ID: mdl-35293803

RÉSUMÉ

Rapidly identifying methicillin-resistant Staphylococcus aureus (MRSA) with high integration in the current workflow is critical in clinical practices. We proposed a matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS)-based machine learning model for rapid MRSA prediction. The model was evaluated on a prospective test and four external clinical sites. For the data set comprising 20,359 clinical isolates, the area under the receiver operating curve of the classification model was 0.78 to 0.88. These results were further interpreted using shapely additive explanations and presented using the pseudogel method. The important MRSA feature, m/z 6,590 to 6,599, was identified as a UPF0337 protein SACOL1680 with a lower binding affinity or no docking results compared with UPF0337 protein SA1452, which is mainly detected in methicillin-susceptible S. aureus. Our MALDI-TOF MS-based machine learning model for rapid MRSA identification can be easily integrated into the current clinical workflows and can further support physicians in prescribing proper antibiotic treatments. IMPORTANCE Over 20,000 clinical MSSA and MRSA isolates were collected to build a machine learning (ML) model to identify MSSA/MRSA and their markers. This model was tested across four external clinical sites to ensure the model's usability. We report the first discovery and validation of MRSA markers on the largest scale of clinical MSSA and MRSA isolates collected to date, covering five different clinical sites. Our developed approach for the rapid identification of MSSA and MRSA can be highly integrated into the current workflows.


Sujet(s)
Staphylococcus aureus résistant à la méticilline , Infections à staphylocoques , Humains , Apprentissage machine , Études prospectives , Spectrométrie de masse MALDI/méthodes , Infections à staphylocoques/diagnostic , Staphylococcus aureus/composition chimique
18.
J Mol Cell Cardiol ; 166: 91-106, 2022 05.
Article de Anglais | MEDLINE | ID: mdl-35235835

RÉSUMÉ

Adult mammals have limited potential for cardiac regeneration after injury. In contrast, neonatal mouse heart, up to 7 days post birth, can completely regenerate after injury. Therefore, identifying the key factors promoting the proliferation of endogenous cardiomyocytes (CMs) is a critical step in the development of cardiac regeneration therapies. In our previous study, we predicted that mitogen-activated protein kinase (MAPK) interacting serine/threonine-protein kinase 2 (MNK2) has the potential of promoting regeneration by using phosphoproteomics and iGPS algorithm. Here, we aimed to clarify the role of MNK2 in cardiac regeneration and explore the underlying mechanism. In vitro, MNK2 overexpression promoted, and MNK2 knockdown suppressed cardiomyocyte proliferation. In vivo, inhibition of MNK2 in CMs impaired myocardial regeneration in neonatal mice. In adult myocardial infarcted mice, MNK2 overexpression in CMs in the infarct border zone activated cardiomyocyte proliferation and improved cardiac repair. In CMs, MNK2 binded to eIF4E and regulated its phosphorylation level. Knockdown of eukaryotic translation initiation factor (eIF4E) impaired the proliferation-promoting effect of MNK2 in CMs. MNK2-eIF4E axis stimulated CMs proliferation by activating cyclin D1. Our study demonstrated that MNK2 kinase played a critical role in cardiac regeneration. Over-expression of MNK2 promoted cardiomyocyte proliferation in vitro and in vivo, at least partly, by activating the eIF4E-cyclin D1 axis. This investigation identified a novel target for heart regenerative therapy.


Sujet(s)
Facteur-4E d'initiation eucaryote , Infarctus du myocarde , Protein-Serine-Threonine Kinases/métabolisme , Animaux , Cycline D1/métabolisme , Facteur-4E d'initiation eucaryote/métabolisme , Mammifères/métabolisme , Souris , Infarctus du myocarde/métabolisme , Myocytes cardiaques/métabolisme , Phosphorylation
19.
Clin Cosmet Investig Dermatol ; 14: 1033-1043, 2021.
Article de Anglais | MEDLINE | ID: mdl-34471367

RÉSUMÉ

BACKGROUND: Atopic dermatitis (AD) is a chronic, inflammatory cutaneous disorder characterized by a T helper 2 (Th2) immune response phenotype. Extracellular vesicles (EVs) are a heterogeneous family of cell-derived membranous structures, which transport cellular components such as DNA and proteins, and are involved in multiple physiological and pathological processes. Increasing evidence has shown that EVs secretion took part in the pathogenesis of AD. However, the proteomic studies of plasma-derived EVs in AD patients have not been reported. OBJECTIVE: In this study, we investigated the diversity of plasma EVs collected from AD patients and healthy individuals and suggested that the candidates for uniquely or differentially expressed proteins in plasma EVs could be a diagnostic marker in AD. METHODS: The plasma EVs were collected from 12 patients with moderate-to-severe AD and 13 healthy subjects. Proteomic analysis was performed by using a comprehensive nanoLC­MS/MS method. RESULTS: Proteomic analysis revealed that a total of 1478 proteins in plasma EVs were found to be common proteins in AD, whereas a total of 1597 proteins in plasma EVs were found to be common proteins in HC. Eighty-six proteins in plasma EVs showed more than 2.5-fold up-regulation, while a total of 225 proteins in plasma EVs showed less than 1/2.5-fold down-regulation with a significant difference (p < 0.05) among AD compared with HC. The candidates for differentially expressed proteins in plasma EVs have been described as a connectivity PPI network related to several KEGG pathways, including pathways in platelet activation, complement, and so on. CONCLUSION: SLP-76 tyrosine phosphoprotein (SLP76) involved in platelet activation may significantly contribute to the pathogenesis of AD. We will further verify the role of SLP67 in AD via animal and cell experiments to provide a promising therapeutic or diagnostic target.

20.
Diabetes Metab Syndr Obes ; 14: 3337-3344, 2021.
Article de Anglais | MEDLINE | ID: mdl-34321900

RÉSUMÉ

PURPOSE: To evaluate the blood glucose and renal function, determine the prevalence of hyperglycemia/diabetes mellitus (DM) and renal disease (nephropathy), and investigate the association between hyperglycemia/DM and renal disease in patients with viral hepatitis (VH). PATIENTS AND METHODS: A total of 491 subjects were included in the study. Patients with VH were further divided into the hepatitis B virus (HBV) infection, hepatitis C virus (HCV) infection, and HBV-HCV co-infection subgroups. Fasting blood glucose, glycated hemoglobin (HbA1c), glycated albumin (GA), glutamic oxaloacetic transaminase (GOT), creatinine (Cr), and cystatin C (Cys C) levels were measured. Urine microalbumin levels were also assessed. Formulas for estimated average glucose calculated using glycated albumin(eAG(GA)), estimated average glucose calculated using HbA1c (eAG(HbA1c)), and estimated glomerular filtration rate calculated using cystatin C (eGFRcys) were used to evaluate the average glucose and renal function. RESULTS: The prevalence of hyperglycemia/DM and renal disease was significantly higher in the VH group, especially in the HCV subgroup. The prevalence of renal disease was significantly higher in patients with VH with eAG(GA) ≥200 mg/dL. CONCLUSION: Our study used multiple parameters to evaluate blood glucose and renal function in patients with VH and found that hyperglycemia/DM and renal disease are closely associated with VH, especially in subjects with HCV infection. Patients with VH, especially those with HCV infection and hyperglycemia/DM, were particularly vulnerable to renal disease.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE