Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 28
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Commun ; 15(1): 5038, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38866771

RÉSUMÉ

Transition metal compounds with kagome structure have been found to exhibit a variety of exotic structural, electronic, and magnetic orders. These orders are competing with energies very close to each other, resulting in complex phase transitions. Some of the phases are easily observable, such as the charge density wave (CDW) and the superconducting phase, while others are more challenging to identify and characterize. Here we present magneto-transport evidence of a new phase below ~ 35 K in the kagome topological metal CsV3Sb5 (CVS) thin flakes between the CDW and the superconducting transition temperatures. This phase is characterized by six-fold rotational symmetry in the in-plane magnetoresistance (MR) and is connected to the orbital current order in CVS. Furthermore, the phase is characterized by a large in-plane negative magnetoresistance, which suggests the existence of a three-dimensional, magnetic field-tunable orbital current ordered phase. Our results highlight the potential of magneto-transport to reveal the interactions between exotic quantum states of matter and to uncover the symmetry of such hidden phases.

2.
J Exerc Sci Fit ; 22(2): 168-177, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38464601

RÉSUMÉ

Background: Resistance training (RT) and protein supplementation have beneficial effects on the human body. However, it is unknown if RT's health-promoting benefits are enhanced by food-borne protein, such as cheese supplements. This study investigated at how the body composition, lipid profile, muscle strength and intestinal microbiota changed following four weeks of RT combined with cheese supplementation. Methods: Thirty-five male and untrained adults were divided into 4 groups [control group (CON), low-dose group (LG), medium-dose group (MG), and high-dose group (HG)] and underwent a 4-week RT (3 times/week) in combination with cheese supplementation. Participants received 108 g (LG), 216 g (MG), or 324 g (HG) of cheese on the day of RT, and each serving (108 g) of cheese contained 6.7 g of food-borne protein. The RT program was a whole-body program with movements such as chest presses, leg presses, seated rowing, knee extensions and triceps pushdown. The exercise consisted of 3 sets of 8-12 repetitions at 70%RM, with a 120-s break in between. Body parameters (body composition, lipid profile and muscle strength) were assessed at baseline and after the 4 weeks of the intervention. The feces sample was taken every weekend. A two-way (group × time) mixed-design ANOVA was used to examine the body parameters. Independent one-way ANOVA was used to analyze the differences between groups in baseline characteristics and different values of each parameter. Results: HDL-C level was higher in MG than in LG. In comparison to LG, MG had lower levels of total cholesterol, low-density lipoprotein cholesterol, body weight, body mass index, body fat mass and body fat percentage. However, there was no difference in muscle strength between in the four groups. The abundance of Actinobacteria was higher in LG and Erysipelotrichaceae was lower in MG and HG. Conclusion: The findings suggest that cheese could be a readily available food-borne protein supplement to enhance the beneficial effects of RT on health. It may improve body composition and lipid profile by altering the proportion of intestinal microbiota. During the 4-week RT intervention, 13.4 g of foodborne protein in the form of cheese 3 times per week was the ideal dosage.

4.
Nat Commun ; 14(1): 2526, 2023 May 02.
Article de Anglais | MEDLINE | ID: mdl-37130859

RÉSUMÉ

Anisotropy is a manifestation of lowered symmetry in material systems that have profound fundamental and technological implications. For van der Waals magnets, the two-dimensional (2D) nature greatly enhances the effect of in-plane anisotropy. However, electrical manipulation of such anisotropy as well as demonstration of possible applications remains elusive. In particular, in-situ electrical modulation of anisotropy in spin transport, vital for spintronics applications, has yet to be achieved. Here, we realized giant electrically tunable anisotropy in the transport of second harmonic thermal magnons (SHM) in van der Waals anti-ferromagnetic insulator CrPS4 with the application of modest gate current. Theoretical modeling found that 2D anisotropic spin Seebeck effect is the key to the electrical tunability. Making use of such large and tunable anisotropy, we demonstrated multi-bit read-only memories (ROMs) where information is inscribed by the anisotropy of magnon transport in CrPS4. Our result unveils the potential of anisotropic van der Waals magnons for information storage and processing.

5.
Sci Rep ; 13(1): 8425, 2023 05 24.
Article de Anglais | MEDLINE | ID: mdl-37225755

RÉSUMÉ

Artificial intelligence has been successfully applied in various fields, one of which is computer vision. In this study, a deep neural network (DNN) was adopted for Facial emotion recognition (FER). One of the objectives in this study is to identify the critical facial features on which the DNN model focuses for FER. In particular, we utilized a convolutional neural network (CNN), the combination of squeeze-and-excitation network and the residual neural network, for the task of FER. We utilized AffectNet and the Real-World Affective Faces Database (RAF-DB) as the facial expression databases that provide learning samples for the CNN. The feature maps were extracted from the residual blocks for further analysis. Our analysis shows that the features around the nose and mouth are critical facial landmarks for the neural networks. Cross-database validations were conducted between the databases. The network model trained on AffectNet achieved 77.37% accuracy when validated on the RAF-DB, while the network model pretrained on AffectNet and then transfer learned on the RAF-DB results in validation accuracy of 83.37%. The outcomes of this study would improve the understanding of neural networks and assist with improving computer vision accuracy.


Sujet(s)
Blessures accidentelles , Reconnaissance faciale , Humains , Intelligence artificielle , Ordinateurs ,
6.
Nat Commun ; 14(1): 2136, 2023 Apr 14.
Article de Anglais | MEDLINE | ID: mdl-37059725

RÉSUMÉ

The realization of graphene gapped states with large on/off ratios over wide doping ranges remains challenging. Here, we investigate heterostructures based on Bernal-stacked bilayer graphene (BLG) atop few-layered CrOCl, exhibiting an over-1-GΩ-resistance insulating state in a widely accessible gate voltage range. The insulating state could be switched into a metallic state with an on/off ratio up to 107 by applying an in-plane electric field, heating, or gating. We tentatively associate the observed behavior to the formation of a surface state in CrOCl under vertical electric fields, promoting electron-electron (e-e) interactions in BLG via long-range Coulomb coupling. Consequently, at the charge neutrality point, a crossover from single particle insulating behavior to an unconventional correlated insulator is enabled, below an onset temperature. We demonstrate the application of the insulating state for the realization of a logic inverter operating at low temperatures. Our findings pave the way for future engineering of quantum electronic states based on interfacial charge coupling.

7.
Nat Commun ; 12(1): 6279, 2021 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-34725338

RÉSUMÉ

Van der Waals magnets have emerged as a fertile ground for the exploration of highly tunable spin physics and spin-related technology. Two-dimensional (2D) magnons in van der Waals magnets are collective excitation of spins under strong confinement. Although considerable progress has been made in understanding 2D magnons, a crucial magnon device called the van der Waals magnon valve, in which the magnon signal can be completely and repeatedly turned on and off electrically, has yet to be realized. Here we demonstrate such magnon valves based on van der Waals antiferromagnetic insulator MnPS3. By applying DC electric current through the gate electrode, we show that the second harmonic thermal magnon (SHM) signal can be tuned from positive to negative. The guaranteed zero crossing during this tuning demonstrates a complete blocking of SHM transmission, arising from the nonlinear gate dependence of the non-equilibrium magnon density in the 2D spin channel. Using the switchable magnon valves we demonstrate a magnon-based inverter. These results illustrate the potential of van der Waals anti-ferromagnets for studying highly tunable spin-wave physics and for application in magnon-base circuitry in future information technology.

8.
Plant Cell ; 33(4): 1196-1211, 2021 05 31.
Article de Anglais | MEDLINE | ID: mdl-33604650

RÉSUMÉ

Arabidopsis thaliana CONSTANS (CO) is an essential transcription factor that promotes flowering by activating the expression of the floral integrator FLOWERING LOCUS T (FT). A number of histone modification enzymes involved in the regulation of flowering have been identified, but the involvement of epigenetic mechanisms in the regulation of the core flowering regulator CO remains unclear. Previous studies have indicated that the transcription factors, FLOWERING BHLH1 (FBH1), FBH2, FBH3, and FBH4, function redundantly to activate the expression of CO. In this study, we found that the KDM3 group H3K9 demethylase JMJ28 interacts with the FBH transcription factors to activate CO by removing the repressive mark H3K9me2. The occupancy of JMJ28 on the CO locus is decreased in the fbh quadruple mutant, suggesting that the binding of JMJ28 is dependent on FBHs. Furthermore, genome-wide occupancy profile analyses indicate that the binding of JMJ28 to the genome overlaps with that of FBH3, indicating a functional association of JMJ28 and FBH3. Together, these results indicate that Arabidopsis JMJ28 functions as a CO activator by interacting with the FBH transcription factors to remove H3K9me2 from the CO locus.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/physiologie , Protéines de liaison à l'ADN/métabolisme , Fleurs/physiologie , Histone Demethylases/métabolisme , Facteurs de transcription/métabolisme , Arabidopsis/génétique , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Protéines de liaison à l'ADN/génétique , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes végétaux , Génome végétal , Histone Demethylases/génétique , Histone/métabolisme , Lysine/métabolisme , Végétaux génétiquement modifiés/génétique , Facteurs de transcription/génétique
9.
Plant J ; 103(5): 1735-1743, 2020 08.
Article de Anglais | MEDLINE | ID: mdl-32445267

RÉSUMÉ

Plant trichomes are large single cells that are organized in a regular pattern and play multiple biological functions. In Arabidopsis, trichome development is mainly governed by the core trichome initiation regulators, including the R2R3 type MYB transcript factor GLABRA 1 (GL1), bHLH transcript factors GLABRA 3/ENHANCER OF GLABRA 3 (GL3/EGL3), and the WD-40 repeat protein TRANSPARENT TESTA GLABRA 1 (TTG1), as well as the downstream trichome regulator GLABRA 2 (GL2). GL1, GL3/EGL3, and TTG1 can form a trimeric activation complex to activate GL2, which is required for the trichome initiation and maintenance during cell differentiation. Arabidopsis JMJ29 is a JmjC domain-containing histone demethylase belonging to the JHDM2/KDM3 group. Members of the JHDM2/KDM3 group histone demethylases are mainly responsible for the H3K9me1/2 demethylation. In the present study, we found that the trichome density on leaves and inflorescence stems is significantly decreased in jmj29 mutants. The expression of the core trichome regulators GL1, GL2, and GL3 is decreased in jmj29 mutants as well. Furthermore, JMJ29 can directly target GL3 and remove H3K9me2 on the GL3 locus. Collectively, we found that Arabidopsis JMJ29 is involved in trichome development by directly regulating GL3 expression. These results provide further insights into the molecular mechanism of epigenetic regulation in Arabidopsis trichome development.


Sujet(s)
Protéines d'Arabidopsis/physiologie , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs généraux de transcription/physiologie , Trichomes/génétique , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Régulation de l'expression des gènes végétaux , Gènes de plante , Facteurs généraux de transcription/génétique , Facteurs généraux de transcription/métabolisme , Trichomes/métabolisme
10.
Front Neurol ; 11: 96, 2020.
Article de Anglais | MEDLINE | ID: mdl-32158423

RÉSUMÉ

Objective: To explore the clinical manifestation, diagnosis, therapy, and mechanism of hemichorea associated with non-ketotic hyperglycemia (HC-NH) so as to enhance awareness and avoid misdiagnosis or missed diagnosis of the disease. Methods: A case of HC-NH was reported and reviewed in terms of the clinical features, diagnosis and treatment. Results: Hemichorea associated with non-ketotic hyperglycemia is a rare complication of diabetes mellitus, which is commonly seen in elderly women with poorly-controlled diabetes. The condition is characterized by non-ketotic hyperglycemia, unilateral involuntary choreiform movements, and contralateral basal ganglia hyper-intensity by T1-weighted MR imaging or high density on CT scans. Blood glucose control is the basal treatment, in combination with dopamine receptor antagonists and benzodiazepine sedative, in controlling hemichorea. Conclusion: In clinical practice, the possibility of unilateral chorea should be considered for diabetic patients with poor blood glucose control.

11.
J Phys Condens Matter ; 32(12): 12LT01, 2020 Mar 20.
Article de Anglais | MEDLINE | ID: mdl-31778977

RÉSUMÉ

Topological semimetal (TSM) AuTe2Br thin flakes have been studied by Raman spectroscopy and magneto-transport measurement. The angle-resolved polarized Raman spectrum of AuTe2Br (bulk and thin flake) shows strong anisotropy. Together with high resolution transmission electron microscopy (TEM), we establish a non-destructive method to determine the crystallographic orientation of AuTe2Br flakes. At high temperature (T > 50 K), the magneto-resistance (MR) of AuTe2Br thin flakes shows typical parabolic-like behavior, which can be well fitted by the two-fluid model. However, at low temperature (T ⩽ 30 K), the MR of thin flakes (<17 nm) clearly deviates from the two-fluid model as well as from the Kohler's rule, suggesting a new type of scattering emerging below 30 K. Several possible scattering mechanisms are discussed and the respective corrections to MR are compared with our experimental data. In addition, the conductivity of these metallic crystals is also found to be highly anisotropic, with the hole mobility along the a axis about five times higher than that along the c axis.

12.
Nat Commun ; 10(1): 5736, 2019 12 16.
Article de Anglais | MEDLINE | ID: mdl-31844067

RÉSUMÉ

Photosensing and energy harvesting based on exotic properties of quantum materials and new operation principles have great potential to break the fundamental performance limit of conventional photodetectors and solar cells. Weyl semimetals have demonstrated novel optoelectronic properties that promise potential applications in photodetection and energy harvesting arising from their gapless linear dispersion and Berry field enhanced nonlinear optical effect at the vicinity of Weyl nodes. In this work, we demonstrate robust photocurrent generation at the edge of Td-WTe2, a type-II Weyl semimetal, due to crystalline-symmetry breaking along certain crystal fracture directions and possibly enhanced by robust fermi-arc type surface states. This edge response is highly generic and arises universally in a wide class of quantum materials with similar crystal symmetries. The robust and generic edge current response provides a charge separation mechanism for photosensing and energy harvesting over broad wavelength range.

13.
ACS Appl Mater Interfaces ; 11(45): 42358-42364, 2019 Nov 13.
Article de Anglais | MEDLINE | ID: mdl-31633328

RÉSUMÉ

Two-dimensional material-based ferroelectric field-effect transistors (2D-FeFETs) hold great promise in information storage and processing. However, an often-observed and hard-to-control anti-hysteresis response of 2D-FeFETs, for example, hysteretic switching of the resistance states of the devices opposite to that of the actual polarization of the ferroelectric dielectric, represents a major issue in the industrial applications of such devices. Here, we demonstrate a van der Waals buffer technique that eliminates anti-hysteresis in black phosphorus (BP) 2D-FeFETs and restores their intrinsic hysteretic behavior. Our modified BP 2D-FeFETs showed outstanding performance including high room-temperature carrier mobility, robust bistable states with fast response to a gate, a large on/off ratio at zero gate voltage, a large and considerably more stable memory window, and a long retention time. During repeated gate operation, the memory window of the buffered device is ∼7000 times more stable than the unbuffered device. Such a method could be crucial in future information technological applications that utilize the intrinsic properties of 2D-FeFETs.

14.
Nano Lett ; 19(3): 2148-2153, 2019 03 13.
Article de Anglais | MEDLINE | ID: mdl-30835131

RÉSUMÉ

Emerging two-dimensional (2D) semiconducting materials serve as promising alternatives for next-generation digital electronics and optoelectronics. However, large-scale 2D semiconductor films synthesized so far are typically polycrystalline with defective grain boundaries that could degrade their performance. Here, for the first time, wafer-size growth of a single-crystal Bi2O2Se film, which is a novel air-stable 2D semiconductor with high mobility, was achieved on insulating perovskite oxide substrates [SrTiO3, LaAlO3, (La, Sr)(Al, Ta)O3]. The layered Bi2O2Se epilayer exhibits perfect lattice matching and strong interaction with perovskite oxide substrates, which enable unidirectional alignment and seamless mergence of multiple seeds into single-crystal continuous films free of detrimental grain boundaries. The single-crystal Bi2O2Se thin films show excellent spatial homogeneity over the entire wafer and allow for the batch fabrication of high-performance field-effect devices with high mobilities of ∼150 cm2 V-1 s-1 at room temperature, excellent switching behavior with large on/off ratio of >105, and high drive current of ∼45 µA µm-1 at a channel length of ∼5 µm. Our work makes a step toward the practical applications of high-mobility semiconducting 2D layered materials and provides an alternative platform of oxide heterostructure to investigate novel physical phenomena.

15.
Front Plant Sci ; 10: 233, 2019.
Article de Anglais | MEDLINE | ID: mdl-30863422

RÉSUMÉ

In Arabidopsis, the circadian rhythm is associated with multiple important biological processes and maintained by multiple interconnected loops that generate robust rhythms. The circadian clock central loop is a negative feedback loop composed of the core circadian clock components. TOC1 (TIMING OF CAB EXPRESSION 1) is highly expressed in the evening and negatively regulates the expression of CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)/LHY (LATE ELONGATED HYPOCOTYL). CCA1/LHY also binds to the promoter of TOC1 and represses the TOC1 expression. Our recent research revealed that the histone modification complex comprising of LYSINE-SPECIFIC DEMETHYLASE 1 (LSD1)-LIKE 1/2 (LDL1/2) and HISTONE DEACETYLASE 6 (HDA6) can be recruited by CCA1/LHY to repress TOC1 expression. In this study, we found that HDA6, LDL1, and LDL2 can interact with TOC1, and the LDL1/2-HDA6 complex is associate with TOC1 to repress the CCA1/LHY expression. Furthermore, LDL1/2-HDA6 and TOC1 co-target a subset of genes involved in the circadian rhythm. Collectively, our results indicate that the LDL1/2-HDA6 histone modification complex is important for the regulation of the core circadian clock components.

16.
Nat Mater ; 18(5): 476-481, 2019 05.
Article de Anglais | MEDLINE | ID: mdl-30833780

RÉSUMÉ

The experimental manifestation of topological effects in bulk materials is attracting enormous research interest. However, direct experimental evidence of the effective k-space monopole of the Weyl nodes has so far been lacking. Here, signatures of the singular topology of the type-II Weyl semimetal TaIrTe4 are revealed in the photoresponses, which are related to divergence of the Berry curvature. TaIrTe4 exhibits a large photoresponsivity of 130.2 mA W-1-with 4 µm excitation in an unbiased field-effect transistor at room temperature-arising from the third-order nonlinear optical response, approaching the performance of commercial low-temperature detectors. In addition, the circularly polarized galvanic response is enhanced at 4 µm, possibly due to the same Berry curvature singularity enhancement. Considering the optical selection rule of chiral Weyl cones, this may open the door for studying and controlling the chiral polarization of Weyl fermions with an electric field in addition to the optical helicities.

17.
ACS Appl Mater Interfaces ; 10(46): 39890-39897, 2018 Nov 21.
Article de Anglais | MEDLINE | ID: mdl-30398833

RÉSUMÉ

The air instability of black phosphorus (BP) severely hinders the development of its electronic and optoelectronic applications. Although a lot of effort has been made to passivate it against degradation in ambient conditions, approaches to further manipulate the properties of passivated BP are still very limited. Herein, we report a simple and low-cost chemical method that can achieve BP passivation and property tailoring simultaneously. The method is conducted by immersing a BP sample in the solution containing both 2,2,6,6-tetramethylpiperidinyl- N-oxyl (TEMPO) and triphenylcarbenium tetrafluorobor in a mixture of water and acetone (v/v = 1:1). After the treatment, the BP sample is functionalized with TEMPO, which not only efficiently passivates BP but also p-dopes BP to a degenerated density level of 1013 cm-2. The performance of the BP field effect transistor is improved after functionalization with a high Ion/ Ioff ratio of 106 and carrier mobility of 881.5 cm2/(V·s). The functionalization-induced doping also significantly reduces the contact resistance between BP and the Cr/Au electrode to 0.97 kΩ·µm. Additionally, we observe a great reduction of BP electrical and optical anisotropies after functionalization. This chemical functionalization method provides a viable route to simultaneously passivate and tune the properties of BP.

18.
Nucleic Acids Res ; 46(20): 10669-10681, 2018 11 16.
Article de Anglais | MEDLINE | ID: mdl-30124938

RÉSUMÉ

In Arabidopsis, the circadian clock central oscillator genes are important cellular components to generate and maintain circadian rhythms. There is a negative feedback loop between the morning expressed CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)/LHY (LATE ELONGATED HYPOCOTYL) and evening expressed TOC1 (TIMING OF CAB EXPRESSION 1). CCA1 and LHY negatively regulate the expression of TOC1, while TOC1 also binds to the promoters of CCA1 and LHY to repress their expression. Recent studies indicate that histone modifications play an important role in the regulation of the central oscillators. However, the regulatory relationship between histone modifications and the circadian clock genes remains largely unclear. In this study, we found that the Lysine-Specific Demethylase 1 (LSD1)-like histone demethylases, LDL1 and LDL2, can interact with CCA1/LHY to repress the expression of TOC1. ChIP-Seq analysis indicated that LDL1 targets a subset of genes involved in the circadian rhythm regulated by CCA1. Furthermore, LDL1 and LDL2 interact with the histone deacetylase HDA6 and co-regulate TOC1 by histone demetylation and deacetylaion. These results provide new insight into the molecular mechanism of how the circadian clock central oscillator genes are regulated through histone modifications.


Sujet(s)
Protéines d'Arabidopsis/génétique , Horloges circadiennes/génétique , Protéines de liaison à l'ADN/génétique , Régulation de l'expression des gènes végétaux , Histone deacetylases/génétique , Histone Demethylases/génétique , Facteurs de transcription/génétique , Arabidopsis/génétique , Arabidopsis/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines de liaison à l'ADN/métabolisme , Analyse de profil d'expression de gènes , Code histone/génétique , Histone deacetylases/métabolisme , Histone Demethylases/métabolisme , Complexes multiprotéiques/génétique , Complexes multiprotéiques/métabolisme , Liaison aux protéines , Facteurs de transcription/métabolisme
19.
ACS Appl Mater Interfaces ; 10(33): 27840-27849, 2018 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-30062874

RÉSUMÉ

Efficient modulation of carrier concentration is fundamentally important for tailoring the electronic and photoelectronic properties of semiconducting materials. Photoinduced doping is potentially a promising way to realize such a goal for atomically thin nanomaterials in a rapid and defect-free manner. However, the wide applications of photoinduced doping in nanomaterials are severely constrained by the low doping concentration and poor stability that can be reached. Here, we propose a novel photoinduced doping mechanism based on the external photoelectric effect of metal coating on nanomaterials to significantly enhance the achievable doping concentration and stability. This approach is preliminarily demonstrated by an MX2 (M is Mo or Re; X is S or Se) nanoflake modified through a simple process of sequentially depositing and annealing an Au layer on the surface of the flake. Under ultraviolet (UV) light illumination, the modified MX2 achieves degenerated n-type doping density of 1014 cm-2 rapidly according to the experimentally observed >104 times increment in the channel current. The doping level persists after the removal of UV illumination with a nonobservable decrease over 1 day in vacuum (less than 23% over 7 days under an ambient environment). This photoinduced doping approach may contribute a major leap to the development of photocontrollable nanoelectronics.

20.
Adv Mater ; 30(25): e1706402, 2018 Jun.
Article de Anglais | MEDLINE | ID: mdl-29736942

RÉSUMÉ

The layered ternary compound TaIrTe4 is an important candidate to host the recently predicted type-II Weyl fermions. However, a direct and definitive proof of the absence of inversion symmetry in this material, a prerequisite for the existence of Weyl Fermions, has so far remained evasive. Herein, an unambiguous identification of the broken inversion symmetry in TaIrTe4 is established using angle-resolved polarized Raman spectroscopy. Combining with high-resolution transmission electron microscopy, an efficient and nondestructive recipe to determine the exact crystallographic orientation of TaIrTe4 crystals is demonstrated. Such technique could be extended to the fast identification and characterization of other type-II Weyl fermions candidates. A surprisingly strong in-plane electrical anisotropy in TaIrTe4 thin flakes is also revealed, up to 200% at 10 K, which is the strongest known electrical anisotropy for materials with comparable carrier density, notably in such good metals as copper and silver.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...