Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 18 de 18
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Article de Anglais | MEDLINE | ID: mdl-38818727

RÉSUMÉ

Polyethylene mulch films (MFs) are widely employed in agricultural land to enhance crop yield and quality, but the MF residue causes significant environmental concerns. To promote the sustainable application of MFs, it is essential to assess their fate throughout their service life and understand the underlying degradation mechanisms. In this study, surface-exposed and soil-buried MFs were separately collected from agricultural land in Inner Mongolia, China. The variations in aging performance and corresponding property alterations of MF were thoroughly examined. The results indicated that sunlight exposure considerably hastens MF degradation, whereas buried MFs experience a more moderate aging process due to the inhibitory effects of the dark and anaerobic environment on oxidation. Surface cracking was observed in MF-Light samples as a result of photodegradation, while chemical and moisture interactions with soil caused partial perforation in MF-Soil samples. Relative to the pristine MF, the oxidation, unsaturation, and hydroxylation levels of MF-Light increased to 0.88, 0.35, and 0.73, respectively, with corresponding values for MF-Soil at 0.44, 0.13, and 0.24. The generated oxygen-containing functional groups lead to a decrease in contact angles of MF-Light and MF-Soil, enhancing their hydrophilicity. The aging process of MFs led to a decline in mechanical properties, posing challenges for recycling. Moreover, nearly all phthalate esters (PAEs) were released from MFs, regardless of sunlight exposure or soil burial. The use of MFs also impacted the abundance of soil microbial communities. Specifically, the selected polyethylene MF enriched Actinobacteriota by 75%, while reducing Chloroflexi and Firmicutes by 27% and 45%, respectively.

2.
Waste Manag ; 183: 112-122, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38739988

RÉSUMÉ

Pyrolysis has emerged as a promising technology for valorizing digestate resulting from the anaerobic digestion of food waste. However, the high NOX emissions during pyrolysis limit its application. This study proposed a hydrothermal coupled pyrolysis process to control the element transfer in digestate during biochar production. The efficient reduction of NOX emissions and the improvement of biochar adsorbability were realized. The hydrothermal process reduced the nitrogen content in solid digestate by 49.10 %-81.79 %, thus reducing the NOX precursors in syngas and the N-containing substances in bio-oil. Additionally, the specific surface area and the total pore volume of biochar were enhanced from 25 m2/g to 60-73 m2/g and 0.06 cm3/g to 0.12-0.14 cm3/g, respectively. More defects, oxygen-containing functional groups, and doped Ca on the biochar resulted in a high phosphate removal efficiency of 94 %. The proposed technology provides an efficient and environmentally friendly way to utilize the digestate.


Sujet(s)
Charbon de bois , Pyrolyse , Charbon de bois/composition chimique , Oxydes d'azote/composition chimique , Oxydes d'azote/analyse , Aliments , Élimination des déchets/méthodes , Azote/composition chimique ,
3.
J Environ Manage ; 355: 120487, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38422848

RÉSUMÉ

Biochar amendment for landfill soil cover has the potential to enhance methane removal efficiency while minimizing the soil depth. However, there is a lack of information on the response of biochar-mediated soil cover to the changes in configuration and operational parameters during the methane transport and transformation processes. This study constructed three biochar-amended landfill soil covers, with reduced soil depths from 75 cm (C2) to 55 cm (C3) and 45 cm (C4), and the control group (C1) with 75 cm and no biochar. Two operation phases were conducted under two soil moisture contents and three inlet methane fluxes in each phase. The methane removal efficiency increased for all columns along with the increase in methane flux. However, increasing moisture content from 10% to 20% negatively influenced the methane removal efficiency due to mass transfer limitation when at a low inlet methane flux, especially for C1; while this adverse effect could be alleviated by a high flux. Except for the condition with low moisture content and flux combination, C3 showed comparable methane removal efficiency to C2, both dominating over C1. As for C4 with only 45 cm, a high moisture content combined with a high methane flux enabled its methane removal efficiency to be competitive with other soil depths. In addition to the geotechnical reasons for gas transport processes, the evolution in methanotroph community structure (mainly type I methanotrophs) induced by biochar amendment and variations in soil properties supplemented the biological reasons for the varying methane removal efficiencies.


Sujet(s)
Élimination des déchets , Sol , Sol/composition chimique , Méthane/composition chimique , Installations d'élimination des déchets , Charbon de bois/composition chimique , Microbiologie du sol , Oxydoréduction
4.
Nano Lett ; 23(24): 11785-11792, 2023 Dec 27.
Article de Anglais | MEDLINE | ID: mdl-38078823

RÉSUMÉ

Nanostructured bismuth vanadate (BiVO4) is at the forefront of emerging photoanodes in photoelectrochemical tandem devices for solar water splitting owing to the suitable band edge position and efficient charge separation capability. However, the (photo)chemical corrosion involving V5+ dissolution limits the long-term stability of BiVO4. Herein, guided by DFT calculations, we introduce an ALD-derived NiOx catalyst layer on BiVO4 to stabilize the surface Bi-O bonds, facilitate hole extraction, and thus suppress the V5+ dissolution. At the same time, the ALD NiOx catalyst layer could efficiently suppress the surface recombination and accelerate the surface OER kinetics, boosting the half-cell applied bias photon-to-current efficiency of BiVO4 to 2.05%, as well as a fill factor of 47.1%. By adding trace NaVO3 to the electrolyte, the NiOx/BiVO4 photoanode with an illumination area of 10.5 cm2 shows a record operational stability of more than 2100 h.

5.
Chemosphere ; 344: 140435, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37832880

RÉSUMÉ

Biofilm formation on plastic surface is a growing concern because it can alter the plastic surface properties and exacerbate the ecological risk. Identifying key factors that affecting biofilm formation is critical for effective pollution control. In this study, the poly (ethylene terephthalate) (PET) was aged in water and air conditions with UV irradiation, then incubated in the digestate of food waste anaerobic digestion to allow biofilm formation. Surface analysis techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR-ATR), were utilized to investigated the changes in the topography, roughness, hydrophily, and functional groups change of the PET surface during the aging process. Confocal laser scanning microscopy (CLSM) was used to determine the distribution of microorganisms on the PET surface after incubation in the digestate. This study focused on understanding the interactions between the PET surface and biofilm to identify critical surface factors that affect biofilm formation. Results showed that the four months aging process decreased the contact angle of the PET surface from 96.92° to 76.08° and 68.97° in water and air conditions, respectively, corresponding to an increase of 44% and 70% in the surface energy. Additionally, aging in air conditions led to a rougher surface compared to water conditions. The arithmetic roughness average (Ra) of the PET-Water was 11.0 nm, comparable to that of the pristine PET, while the value of PET-Air was much higher (43.9 nm). The results further indicated that biofilm formation during anaerobic digestion was more sensitive to roughness than hydrophily. The PET surface aged in air conditions provided a more suitable environment for microbial reproduction, leading to the aggradation of living cells.


Sujet(s)
Téréphtalate polyéthylène , Élimination des déchets , Téréphtalate polyéthylène/composition chimique , Aliments , Anaérobiose , Biofilms , Eau/composition chimique , Éthylènes , Propriétés de surface
6.
J Hazard Mater ; 459: 132221, 2023 10 05.
Article de Anglais | MEDLINE | ID: mdl-37544176

RÉSUMÉ

Hydrothermal liquid digestate has been widely accepted as a substrate in anaerobic digestion (AD) for energy recovery. However, the potential negative impacts of hydrothermal liquid digestate on AD remain unclear. In this study, the organic biodegradability of hydrothermal liquid digestate produced from hydrothermal treatment (HTT) at different temperatures was analyzed, and the formation and degradation process of potential inhibitory substances were discussed. Results demonstrated that the AD lag phase of hydrothermal liquid digestate increased from 3 days at raw liquid digestate to 5-21 days. When the HTT temperature reached 220 °C, the methane yield decreased by 48%, and more than 71% of the organics in the hydrothermal liquid digestate were not utilized by AD. Biorefractory substances, such as fulvic and humic acids, accumulate in the hydrothermal liquid digestate. Potential inhibitory substances from Maillard reactions mainly affect the methanogenesis of AD. Most inhibitory substances were degraded within 7-22 days, with the degradation rate following the order of pyrroles > pyrazines > ketones > imidazoles > indoles. The AD community structure and methane conversion were partially re-established after most inhibitory substances were degraded. This study provides valuable information on eliminating the potential negative effects of hydrothermal liquid digestate on AD.


Sujet(s)
Bioréacteurs , Méthane , Anaérobiose , Température , Méthane/métabolisme
7.
Environ Res ; 234: 116551, 2023 10 01.
Article de Anglais | MEDLINE | ID: mdl-37406723

RÉSUMÉ

The treatment of digestate from food waste (DFW) has emerged as the bottleneck for food waste anaerobic digestion. DFW generally contains abundant nutrients that can be recycled by composting. However, the effect of DFW-based compost on soil improvement has not been extensively explored. In this study, soil properties were improved by adding various amounts of DFW-based compost, and the growth conditions of Pak choi were monitored. The results indicated that the DFW-based compost could provide nitrogen, calcium, magnesium, and organic matter, thereby enhancing the growth of Pak choi, accumulating chlorophyll, and improving photosynthesis efficiency. As the amount of added DFW-based compost increased from 0% to 20%, the fresh biomass, leaf weight, and root weight of Pak choi increased by 242%, 262%, and 99%, respectively. The total chlorophyll content was 2.62 mg g-1 in control and increased to 12.45 mg g-1 in the group with 20% DFW-based compost, benefiting the photochemical efficiency of Pak choi. However, the growth was inhibited when the addition amount exceeded 20%, potentially due to excessive nutrient supplementation. Overall, the addition of 20% of DFW-based compost was suggested to promote the growth of Pak choi by providing proper nutrients.


Sujet(s)
Compostage , Élimination des déchets , Sol/composition chimique , Nutriments , Chlorophylle , Azote/analyse , Compléments alimentaires
8.
ACS Nano ; 17(6): 5570-5578, 2023 Mar 28.
Article de Anglais | MEDLINE | ID: mdl-36895079

RÉSUMÉ

Effective harvest of electrochemical energy from insulating compounds serves as the key to unlocking the potential capacity from many materials that otherwise could not be exploited for energy storage. Herein, an effective strategy is proposed by employing LiCoO2, a widely commercialized positive electrode material in Li-ion batteries, as an efficient redox mediator to catalyze the decomposition of Na2CO3 via an intercalating mechanism. Differing from traditional redox mediation processes where reactions occur on the limited surface sites of catalysts, the electrochemically delithiated Li1-xCoO2 forms NayLi1-xCoO2 crystals, which act as a cation intercalating catalyzer that directs Na+ insertion-extraction and activates the reaction of Na2CO3 with carbon. Through altering the route of the mass transport process, such redox centers are delocalized throughout the bulk of LiCoO2, which ensures maximum active reaction sites. The decomposition of Na2CO3 thus accelerated significantly reduces the charging overpotential in Na-CO2 batteries; meanwhile, Na compensation can also be achieved for various Na-deficient cathode materials. Such a surface-induced catalyzing mechanism for conversion-type reactions, realized via cation intercalation chemistry, expands the boundary for material discovery and makes those conventionally unfeasible a rich source to explore for efficient utilization of chemical energy.

9.
Environ Sci Ecotechnol ; 15: 100239, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-36820150

RÉSUMÉ

Hydrothermal treatment (HTT) can efficiently valorize the digestate after anaerobic digestion. However, the disposal of the HTT liquid is challenging. This paper proposes a method to recover energy through the anaerobic co-digestion of food waste and HTT liquid fraction. The effect of HTT liquid recirculation on anaerobic co-digestion performance was investigated. This study focused on the self-generated hydrochars that remained in the HTT supernatant after centrifugation. The effect of the self-generated hydrochars on the methane (CH4) yield and microbial communities were discussed. After adding HTT liquids treated at 140 and 180 °C, the maximum CH4 production increased to 309.36 and 331.61 mL per g COD, respectively. The HTT liquid exhibited a pH buffering effect and kept a favorable pH for the anaerobic co-digestion. In addition, the self-generated hydrochars with higher carbon content and large oxygen-containing functional groups remained in HTT liquid. They increased the electron transferring rate of the anaerobic co-digestion. The increased relative abundance of Methanosarcina, Syntrophomonadaceae, and Synergistota was observed with adding HTT liquid. The results of the principal component analysis indicate that the electron transferring rate constant had positive correlationships with the relative abundance of Methanosarcina, Syntrophomonadaceae, and Synergistota. This study can provide a good reference for the disposal of the HTT liquid and a novel insight regarding the mechanism for the anaerobic co-digestion.

10.
Chemosphere ; 316: 137786, 2023 Mar.
Article de Anglais | MEDLINE | ID: mdl-36634716

RÉSUMÉ

The by-product from the anaerobic digestion of food waste (FW) called the digestate (DFW) needs proper disposal because of its high environmental burden. Composting can transform DFW into a nutrient-containing soil improver via a series of microbial metabolic activities. However, the long composting time and high amount of ammonia emission are the key concerns of DFW composting. In the present study, the effect of DFW-derived biochar (BC-DFW) on microbial succession and its involvement in nitrogen transformation and humification during DFW composting were investigated. The results indicated that the BC-DFW accelerated bacterial and fungal evolution, and the bacterial diversity was augmented by increasing the amount of BC-DFW. In particular, Cryomorpha, Castellaniella, Aequorivita, and Moheibacter were enriched by the addition of BC-DFW, thereby enhancing the degradation of organic matter and nitrogen transformation and increasing the germination index. The group with 25% BC-DFW contained a higher relative abundance of Cryomorpha (2.08%, 2.47%) than the control (0.39%, 1.72%) on days 19 and 35 which benefited the degradation of organic matter. The group with 25% BC-DFW quickly enhanced the growth of Nitrosomonas, thereby accelerating the conversion of ammonium-nitrogen to nitrate-nitrogen and reducing the phytotoxicity of the composting product.


Sujet(s)
Compostage , Microbiote , Élimination des déchets , Aliments , Sol , Azote , Fumier
11.
J Hazard Mater ; 436: 129237, 2022 08 15.
Article de Anglais | MEDLINE | ID: mdl-35739756

RÉSUMÉ

Melamine-urea-formaldehyde impregnated bond paper (MUF) is widely used as panel coating and decorative raw paper. Inappropriate treatment of MUF may lead to environmental pollution. In this study, routine MUF and MUF treated with additional titanium (MUF-T) were subjected to fast pyrolysis, and the product properties at different temperatures were investigated. The pyrolysis temperature was selected considering the reaction stages determined by Gaussian curve-fitting on thermogravimetric analysis curves. It was found that the presence of additional titanium changed the decomposition order of the organic components at 220 °C. Urea-formaldehyde in MUF could be decomposed at 220 °C, which had little effect on other components (melamine and cellulose). However, in terms of MUF-T, the decomposition temperature of urea-formaldehyde was postponed to 244 °C, which means that the pyrolysis strategy needs to choose a temperature higher than 244 °C. The volatiles in MUF-T are more easily converted to bio-gas or bio-oil than those in MUF. However, only CH4 was observed in the bio-gas generated of MUF-T at 220 °C, indicating that titanium did not catalyze the fracture of oxygen-containing functional groups at low temperatures. Titanium condensed at 550 °C, and the utilization of bio-char may face a problem of titanium particle shedding.


Sujet(s)
Pyrolyse , Urée , Formaldéhyde/composition chimique , Température élevée , Titane , Triazines
12.
Sci Total Environ ; 836: 155572, 2022 Aug 25.
Article de Anglais | MEDLINE | ID: mdl-35525367

RÉSUMÉ

Synthesis of carbon material from low-cost and sustainable precursors has been intensively explored in recent years. In this study, a nitrogen (N)-enriched hydrochar was developed via a facile one-step hydrothermal carbonization (HTC) of corn stalk (CS) with liquid digestate (LD) of food waste. The LD substituted water and functioned as the N precursor during HTC. The physicochemical properties of hydrochar derived at different HTC temperatures (180-300 °C) were examined and the reaction mechanism was investigated. Intermolecular dehydration and condensation were the primary reactions in the HTC process of CS without LD. The CS-chars maintained the original structure and morphology of the raw corn stalk. The ammonia and inorganic salts in LD promoted the lignin removal, and accelerated the cleavage of the glycosidic linkages of the polysaccharide and hydrogen bonds of cellulose. Benefited from the ammonia and metals in the LD, the recalcitrance structure of the corn stalk was disrupted during the co-HTC even at a low temperature of 220 °C. Moreover, carbon spheres were observed in the LDCS-chars, indicating the LDCS-chars were resulted from sequential hydrolysis, dehydration and condensation during co-HTC reactions. Reactions between N compounds in the LD and derivatives from CS contributed to N doping. The N content of LDCS-chars achieved 4.95% at 260 °C and 83.94% of the N was presented as pyridinic-N. Co-hydrothermal treatment of CS and LD not only enhanced the characteristics of hydrochar, but also recovered two-thirds of ammoniacal N from the digestate to reduce greenhouse gas emission.


Sujet(s)
Azote , Élimination des déchets , Ammoniac , Carbone/composition chimique , Déshydratation , Aliments , Température , Zea mays/composition chimique
13.
Sci Total Environ ; 819: 153100, 2022 May 01.
Article de Anglais | MEDLINE | ID: mdl-35038512

RÉSUMÉ

The management of digestate from food waste (DFW) has become a worldwide challenge. Pyrolysis is a promising technology to generate biochar from the DFW. However, unlike other biomass, DFW usually has high salt and moisture content, which affects the properties of biochar generated from pyrolysis. The characteristics of biochar derived from DFW with different MCs (5%, 20%, 40%, and 60%) were investigated in the present study. It was found that more micropore and mesopore structures were generated in the biochar with the increase of MC from 5% to 60%, resulting in the Brunauer-Emmett-Teller surface area of the biochar increased from 89.23 m2 g-1 to 117.75 m2 g-1. The MC could also promote the variation of oxygen-containing functional groups and the generation of amorphous carbon structures, which are beneficial for the adsorption property of the biochar. Pyrolysis could stabilize the metals in the biochar, while MC has little effect on the metal speciations. These results provide fundamental information on the impact of MC on the properties of biochar derived from DFW and are important for the optimization of the pre-drying process.


Sujet(s)
Aliments , Élimination des déchets , Adsorption , Charbon de bois/composition chimique , Pyrolyse
14.
Water Res ; 202: 117462, 2021 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-34343870

RÉSUMÉ

Microplastics have received considerable attention in recent years. Understanding the aging mechanism of plastics in different environments (land, fresh water, estuary, and ocean) is critical to control the microplastic formation. Therefore, the aging process of plastics, including polyethylene (PE) and polypropylene (PP), in different environments was simulated by analyzing their physical and chemical structures by using the Raman spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy techniques. After 23 weeks, micro-scale microplastics (size less than 100 µm) could be extracted from the plastic surface through smashing waves in all fresh water and seawater samples. However, complete fragmentation was observed only in the case of thin-film plastics (TFPs, thickness of approximately 10 µm). This phenomenon indicated that TFPs disintegrated to microplastics more easily in the water system than on land, and the water flow notably affected the production of micro-scale particles. Furthermore, ultraviolet radiation affected the chemical structure of plastics through a two-stage process in all environments. In the initial stage, chemical aging occurred in the amorphous regions of both PE and PP, leading to the generation of newly functional groups such as C=O at 1717 cm-1, and a reduced contact angle. In the later stage, PE exhibited additional crystals and increased contact angles, whereas PP demonstrated the tendency of producing oxygen-containing functional groups that could reduce the crystallinity. In addition, several inorganic salts (such as sulfate and phosphorus) in seawater likely combined with C-H-type stretches, thereby promoting the chemical aging of plastics.


Sujet(s)
Matières plastiques , Polluants chimiques de l'eau , Surveillance de l'environnement , Microplastiques , Rayons ultraviolets , Polluants chimiques de l'eau/analyse
15.
Sci Total Environ ; 794: 148785, 2021 Nov 10.
Article de Anglais | MEDLINE | ID: mdl-34225160

RÉSUMÉ

The management of digestate from food waste (DFW) has become a big challenge for anaerobic digestion (AD) plants. It is crucial to understand the characteristics of DFW for its beneficial utilization. This study investigated the long-term characteristics of DFW from an industrial-scale AD plant in China for 16 months. The result showed that the characteristics of the DFW were relatively stable. The DFW contained considerable amounts of organic matter (23-40% of lignin and 12-26% of protein) and abundant nutrients (N, P, and K), with high concentrations of metals (e.g., 55.17 mg g-1 and 15.55 mg g-1 of Ca and Fe) and sulfur (1.40%) on a dry basis. Based on the results, pyrolysis and composting were evaluated as optional conversion ways of DFW. The pyrolysis temperature range of 500 °C to 600 °C was recommended for producing biochar. In this temperature range, the Brunauer-Emmett-Teller surface area of the produced biochar is over 120 m2 g-1. The composting offered the best potential for recovering the nutrients from DFW, but the high ammonia gas content (6970 ppm) should be paid attention to during composting.


Sujet(s)
Compostage , Élimination des déchets , Anaérobiose , Aliments , Plantes comestibles
16.
Environ Pollut ; 263(Pt B): 114413, 2020 Aug.
Article de Anglais | MEDLINE | ID: mdl-32220690

RÉSUMÉ

Methane (CH4) mitigation of biocovers or biofilters for landfills is influenced by the bed material and oxygen availability. The improvement of active aeration for the CH4 oxidation efficiency of biochar-amended landfill soil cover was investigated over a period of 101 days. There were column 1 as the control group, column 2 with biochar amending the soil cover, and column 3 with daily active aeration besides the same biochar amendment. All groups were inoculated with enriched methane oxidation bacteria (MOB). The average CH4 removal efficiency was up to 78.6%, 85.2% and 90.6% for column 1, 2, and 3, respectively. The depth profiles of CH4 oxidation efficiencies over the whole period also showed that the stimulation of CH4 oxidation by biochar amendment was apparent in the top 35 cm but became very faint after two months. This probably was due to the rapid depletion of nitrogen nutrition caused by enhanced methanotrophic activities. While through aeration, CH4 oxidation efficiency was further improved for column 3 than column 2. This enhancement also lasted for the whole period with a reduced decline of CH4 oxidation. Finally, the major MOB Methylocystis, commonly found in the three columns, were most abundant in the top 35 cm for column 3. A more balanced ratio of MOB and more homogeneous microbial community structures across different soil depths were also the results of active aeration.


Sujet(s)
Méthane , Élimination des déchets , Charbon de bois , Oxydoréduction , Sol , Microbiologie du sol , Installations d'élimination des déchets
17.
Bioresour Technol ; 171: 253-9, 2014 Nov.
Article de Anglais | MEDLINE | ID: mdl-25203234

RÉSUMÉ

The non-isothermal thermogravimetric method (TGA) was applied to different chars produced from lignite (LN), sawdust (SD) and their blends at the different mass ratios in order to investigate their thermal reactivity under steam atmosphere. Through TGA analysis, it was determined that the most prominent interaction between sawdust and lignite occurred at the mass ratio of sawdust/lignite as 1:4, but with further dose of more sawdust into its blends with lignite, the positive interaction deteriorated due to the agglomeration and deactivation of the alkali mineral involved in sawdust at high steam gasification temperature. Through systematic comparison, it could be observed that the random pore model was the most suitable among the three gas-solid reaction models adopted in this research. Finally, rational kinetic parameters were reached from these gas-solid reaction models, which provided a basis for design and operation of the realistic system of co-gasification of lignite and sawdust in this research.


Sujet(s)
Biomasse , Charbon de bois/composition chimique , Charbon/analyse , Gaz/composition chimique , Modèles chimiques , Vapeur , Bois/composition chimique , Cinétique , Thermogravimétrie
18.
Bioresour Technol ; 154: 313-21, 2014 Feb.
Article de Anglais | MEDLINE | ID: mdl-24412857

RÉSUMÉ

This study aims to investigate the interaction and kinetic behavior of CO2 gasification of coal, biomass and their blends by thermogravimetry analysis (TG). The gas products evolved from gasification were measured online with Fourier Transform Infrared Spectroscopy (FTIR) coupled with TG. Firstly, TG experiments indicated that interaction between the coals and biomasses mainly occurred during co-gasification process. The most significant synergistic interaction occurred for LN with SD at the blending mass ratio 4:1. Furthermore, thermal kinetic analysis indicated that the activation energy involved in co-gasification decreased as the SD content increased until the blending ratio of SD with coal reached 4:1. The rise of the frequency factor indicated that the increase of SD content favored their synergistic interaction. Finally, FTIR analysis of co-gasification of SD with LN indicated that except for CO, most gases including CH3COOH, C6H5OH, H2O, etc., were detected at around 50-700°C.


Sujet(s)
Biomasse , Charbon , Gaz/composition chimique , Spectroscopie infrarouge à transformée de Fourier/méthodes , Thermogravimétrie/méthodes , Cinétique , Oryza/composition chimique , Bois/composition chimique , Zea mays/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...