Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Am Chem Soc ; 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39166377

RÉSUMÉ

Effective design and engineering of catalysts for an optimal performance depend extensively on a profound understanding of the intricate catalytic dynamics under reaction conditions. In this work, we showcase rapid freeze-quench (RFQ) Mössbauer spectroscopy as a powerful technique for quantitatively monitoring the catalytic dynamics of single-Cu-atom-modified SnS2 (Cu1/SnS2) in the electrochemical CO2 reduction reaction (CO2RR). Utilizing the newly established RFQ 119Sn Mössbauer methodology, we clearly identified the dynamic transformation of Cu1/SnS2 to Cu1/SnS and Cu1/Sn during the CO2RR, resulting in an outstanding Faradaic efficiency for formate production (∼90.9%) with a partial current density of 158 mA cm-2. Results from operando Raman spectroscopy, operando attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), quasi in situ electron microscopy, and quasi in situ X-ray photoelectron spectroscopy (XPS) measurements indicate that the anchored single Cu atom in Cu1/SnS2 can accelerate the reduction of SnS with in situ formation of Cu1/Sn under CO2RR conditions, which effectively promote the generation of *CO2-/*OCHO intermediates. Theoretical calculations further support that in situ formed Cu1/Sn works as active sites catalyzing the CO2RR, which reduces the energy barrier for the CO2 activation and formation of the *OCHO intermediate, thereby facilitating the conversion of CO2 to formate. The results of this work provide a thorough understanding of the dynamic evolution of Sn-based catalytic sites in the CO2RR and shed light for engineering single atoms with an optimized catalytic performance. We anticipate that RFQ Mössbauer spectroscopy will emerge as an advanced spectroscopic technique for enabling a genuine visualization of catalytic dynamics across various reaction systems.

2.
BMC Genomics ; 25(1): 213, 2024 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-38413848

RÉSUMÉ

BACKGROUND: The stria vascularis (SV), located in the lateral wall of the cochlea, maintains cochlear fluid homeostasis and mechanoelectrical transduction (MET) activity required for sound wave conduction. The pathogenesis of a number of human inheritable deafness syndromes, age related hearing loss, drug-induced ototoxicity and noise-induced hearing loss results from the morphological changes and functional impairments in the development of the SV. In this study, we investigate the implications of intercellular communication within the SV in the pathogenesis of sensorineural hearing loss (SNHL). We aim to identify commonly regulated signaling pathways using publicly available single-cell transcriptomic sequencing (scRNA-seq) datasets. METHODS: We analyzed scRNA-seq data, which was derived from studying the cochlear SV in mice with SNHL compared to normal adult mice. After quality control and filtering, we obtained the major cellular components of the mouse cochlear SV and integrated the data. Using Seurat's FindAllMarkers and FindMarkers packages, we searched for novel conservative genes and differential genes. We employed KEGG and GSEA to identify molecular pathways that are commonly altered among different types of SNHL. We utilized pySCENIC to discover new specific regulatory factors in SV subpopulation cells. With the help of CellChat, we identified changes in subpopulation cells showing similar trends across different SNHL types and their alterations in intercellular communication pathways. RESULTS: Through the analysis of the integrated data, we discovered new conserved genes to SV specific cells and identified common downregulated pathways in three types of SNHL. The enriched genes for these pathways showing similar trends are primarily associated with the Electron Transport Chain, related to mitochondrial energy metabolism. Using the CellChat package, we further found that there are shared pathways in the incoming signaling of specific intermediate cells in SNHL, and these pathways have common upstream regulatory transcription factor of Nfe2l2. Combining the results from pySCENIC and CellChat, we predicted the transcription factor Nfe2l2 as an upstream regulatory factor for multiple shared cellular pathways in IC. Additionally, it serves as an upstream factor for several genes within the Electron Transport Chain. CONCLUSION: Our bioinformatics analysis has revealed that downregulation of the mitochondrial electron transport chain have been observed in various conditions of SNHL. E2f1, Esrrb, Runx1, Yy1, and Gata2 could serve as novel important common TFs regulating the electron transport chain. Adm has emerged as a potential new marker gene for intermediate cells, while Itgb5 and Tesc show promise as potential new marker genes for marginal cells in the SV. These findings offer a new perspective on SV lesions in SNHL and provide additional theoretical evidence for the same drug treatment and prevention of different pathologies of SNHL.


Sujet(s)
Surdité neurosensorielle , Strie vasculaire , Adulte , Humains , Animaux , Souris , Strie vasculaire/métabolisme , Strie vasculaire/anatomopathologie , Analyse de l'expression du gène de la cellule unique , Surdité neurosensorielle/génétique , Surdité neurosensorielle/anatomopathologie , Cochlée , Facteurs de transcription/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE