Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 342
Filtrer
1.
Int J Legal Med ; 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39134883

RÉSUMÉ

The PowerPlex® 35GY System (Promega, USA) is an advanced eight-dye multiplex STR kit, incorporating twenty-three autosomal STR loci, eleven Y chromosome STR loci, one sex determining marker Amelogenin, and two quality indicators. This multiplex system includes 20 CODIS loci and up to 15 mini-STR loci with sizing values less than 250 bases. In this study, validation for PowerPlex® 35GY System was conducted following the guidelines of SWGDAM, encompassing sensitivity, precision, accuracy, concordance, species specificity, stutter, mixture, stability, and degraded DNA. The results from experiments demonstrated that the PowerPlex® 35GY System could effectively amplify DNA samples, with complete allele detection achieved at 125 pg. Moreover, over 90% of alleles from minor contributors were detected at a mixed ratio of 1:4. Additionally, the system was found to yield full profiles even in the presence of hematin, humic acid, and indigo. The PowerPlex® 35GY System demonstrated superior performance in the sensitivity and degraded DNA studies compared to a six-dye STR kit. Hence, it is evident that the PowerPlex® 35GY System is well-suited for forensic practice, whether in casework or for database samples. These findings provide strong support for the efficacy and reliability of the PowerPlex® 35GY System in forensic applications.

2.
Imeta ; 3(4): e220, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39135700

RÉSUMÉ

Emerging evidence has demonstrated the profound impact of the gut microbiome on cardiovascular diseases through the production of diverse metabolites. Using an animal model of myocardial ischemia-reperfusion (I/R) injury, we found that the prophylactic administration of a well-known probiotic, Bifidobacterium infantis (B. infantis), exhibited cardioprotective effects in terms of preserving cardiac contractile function and preventing adverse cardiac remodeling following I/R and that these cardioprotective effects were recapitulated by its metabolite inosine. Transcriptomic analysis further revealed that inosine mitigated I/R-induced cardiac inflammation and cell death. Mechanistic investigations elucidated that inosine suppressed the production of pro-inflammatory cytokines and reduced the numbers of dendritic cells and natural killer cells, achieved through the activation of the adenosine A2A receptor (A2AR) that when inhibited abrogated the cardioprotective effects of inosine. Additionally, in vitro studies using C2C12 myoblasts revealed that inosine attenuated cell death by serving as an alternative carbon source for adenosine triphosphate (ATP) generation through the purine salvage pathway when subjected to oxygen-glucose deprivation/reoxygenation that simulated myocardial I/R injury. Likewise, inosine reversed the I/R-induced decrease in ATP levels in mouse hearts. Taken together, our findings indicate that B. infantis or its metabolite inosine exerts cardioprotective effects against I/R by suppressing cardiac inflammation and attenuating cardiac cell death, suggesting prophylactic therapeutic options for acute ischemic cardiac injury.

3.
Int J Pharm ; 663: 124581, 2024 Aug 11.
Article de Anglais | MEDLINE | ID: mdl-39137819

RÉSUMÉ

Cold tumors lack T cells infiltration and have low immunogenicity, resulting insufficient immunotherapy response. Therefore, how to realize the transformation from cold tumor to hot tumor is an urgent problem to be solved. Photodynamic therapy can induce immunogenic death of tumor cells (ICD) and activate T lymphocytes to produce tumor immune response. However, hypoxia in the cold tumor microenvironment limits the effectiveness of photodynamic therapy. So in this article, MET-HMME/CAT-HMME@Nlip as a functional co-delivery nanoliposomes was constructed based on overcoming the above problems. Firstly, the oxygen-deficient state could be improved by the following two ways, one is catalase loaded in CAT-HMME@Nlip can decompose high concentration hydrogen peroxide to produce oxygen, and the other is metformin loaded in MET-HMME@Nlip can decrease oxygen consumption by inhibiting of mitochondrial respiration. And then with the increase of substrate oxygen concentration, the sensitivity of photodynamic therapy can be greatly improved and the anti-tumor immune response by PDT-induced ICD can also be enhanced obviously. In addition, metformin could act as a small molecule immune checkpoint inhibitor to reduce the expression of PD-L1 on the surface of tumor cells, thereby effectively improving the specific killing ability of cytotoxic T cells to tumor cells which could not only erasing the primary tumor, but also inhibiting the growth of simulated distant tumors through the immune memory function. This study provides a new idea for improving the clinical treatment effect of hypoxic cold tumors, especially for tumors that could not benefit from immunotherapy due to low or no expression of PD-L1 protein on the surface of tumor cells.

4.
Front Physiol ; 15: 1415746, 2024.
Article de Anglais | MEDLINE | ID: mdl-39045218

RÉSUMÉ

Introduction: Akirin as a highly conserved transcription factor, exerts a profound influence on the growth, development, immune response, and reproductive processes in animals. The brown planthopper (BPH), Nilaparvata lugens, a major pest in rice production in Asia, possesses high reproductive capacity, a critical factor contributing to reduced rice yields. The aims of this study were to demonstrate the regulatory role of Akirin in the reproduction of BPH. Methods: In this study, quantitative PCR (qPCR) was used to detect the mRNA expression of genes. RNA interference (RNAi) was used to downregulate the expression of Akirin gene, and RNA sequencing (RNA-seq) was used to screen for differentially expressed genes caused by Akirin downregulation. Hormone contents were measured with the enzyme linked immunosorbent assay (ELISA), and protein content was evaluated with the bicinchoninic acid (BCA) method. Results: Using BPH genome data, we screened for an Akirin gene (NlAkirin). An analysis of tissue-specific expressions showed that NlAkirin was expressed in all tissues tested in female BPH, but its expression level was highest in the ovary. After inhibiting the mRNA expression of NlAkirin in BPH females, the number of eggs laid, hatching rate, and number of ovarioles decreased. Transcriptome sequencing was performed, following a NlAkirin double-stranded RNA treatment. Compared with the genes of the control, which was injected with GFP double-stranded RNA, there were 438 upregulated genes and 1012 downregulated genes; the expression of vitellogenin (Vg) and vitellogenin receptor (VgR) genes as well as the mRNA expression of genes related to the target of rapamycin (TOR), juvenile hormone (JH), and insulin pathways involved in Vg synthesis was significantly downregulated. As a result of NlAkirin knockdown, the titers of JH III and Ecdysone (Ecd) were downregulated in unmated females but returned to normal levels in mated females. The ovarian protein contents in both unmated and mated females were downregulated. Discussion and conclusion: Our results suggest that NlAkirin affects female BPH reproduction by regulating the mRNA expression of genes related to the Vg, VgR, TOR, JH, and insulin signaling pathways, in addition to the titers of JH III and Ecd. The findings of this research provide novel insights into the regulatory role of Akirin in insect reproductive capacity.

5.
Front Microbiol ; 15: 1368293, 2024.
Article de Anglais | MEDLINE | ID: mdl-38946897

RÉSUMÉ

Introduction: The drawbacks of using antibiotics as feed additives for blue foxes have gradually become apparent; moreover, thymol has wide-spectrum antimicrobial activity and has the potential to replace antibiotics in various animals. However, there are few reports on the effects of thymol on blue foxes. Methods: This study aimed to investigate the effects of different concentrations of thymol on the growth performance, apparent nutrient digestibility, serum biochemical indicators, intestinal morphology, and gut microbiota of blue foxes. Twenty-four male blue foxes (120 ± 5 d) of similar weight (6.05 ± 0.16 kg) were randomly divided into 4 groups. 0, 100, 200, and 300 mg/kg thymol were added to the basal diets of groups C, L, M, and H, respectively. Results: Compared with those in the C group, the addition of 100 mg/kg thymol to the diet significantly increased organic matter (OM) digestibility, crude protein (CP) digestibility, immunoglobulin (Ig) A, IgM, the VH of the duodenum, the CD of the jejunum, the VH of the ileum, and the VH/CD of the ileum (P < 0.05) and strongly significantly increased IgG (P < 0.01). The addition of 200 mg/kg thymol to the diet increased the VH/CD of the duodenum (P < 0.05). The addition of 300 mg/kg thymol to the diet significantly increased the VH and CD of the jejunum (P < 0.05). The addition of 200 mg/kg and 300 mg/kg thymol to the diets increased the final weight (FW) (P < 0.05). Adding 100 mg/kg thymol significantly increased the levels of interleukin-4 (IL-4) and catalase (CAT) compared with those in the other groups (P < 0.05). 16S rRNA gene detection revealed that thymol can change the abundances of Bifidobacterium, Fusobacterium, Allobaculum, Streptococcus, Megasphaera, and Lactobacillus in the gut. Conclusion: The addition of thymol to diets can increase the abundance of Bifidobacterium, Fusobacterium, and Allobaculum, which may contribute to improving the growth performance of blue foxes.

6.
Healthcare (Basel) ; 12(14)2024 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-39057595

RÉSUMÉ

Nasopharyngeal carcinoma (NPC) requires regular follow-up to detect recurrence as early as possible. However, many patients are unable to regularly follow up due to the inconvenience of the conventional approach. Therefore, this study was designed to investigate the impact of the online clinic on follow-up compliance and prognosis in NPC patients. Patients who were first diagnosed with NPC between April 2019 and November 2019 were enrolled. Good follow-up compliance was defined as having at least one follow-up visit every 6 months within 2 years after treatment completion. Sensitivity analyses were performed using a propensity score matching model. A total of 539 (42%) patients used online follow-up while 731 (58%) used traditional follow-up. The median age of patients in the online cohort was lower than that in the traditional cohort (44 vs. 47, p < 0.001). Compared with the traditional cohort, the online cohort had significantly better follow-up compliance (57.3% vs. 17.1%, p < 0.001) and a higher 2-year PFS rate (98.1% vs. 94.4%, p = 0.003). Survival analysis showed that online follow-up was an independent factor for better survival prognosis (HR 0.39, 95%CI 0.20-0.74, p = 0.004). Sensitivity analysis further confirmed these results. Our study found that the online clinic increased follow-up compliance and improved prognosis in NPC patients.

7.
Cancer Cell ; 42(7): 1217-1238.e19, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38981438

RÉSUMÉ

Although genomic anomalies in glioblastoma (GBM) have been well studied for over a decade, its 5-year survival rate remains lower than 5%. We seek to expand the molecular landscape of high-grade glioma, composed of IDH-wildtype GBM and IDH-mutant grade 4 astrocytoma, by integrating proteomic, metabolomic, lipidomic, and post-translational modifications (PTMs) with genomic and transcriptomic measurements to uncover multi-scale regulatory interactions governing tumor development and evolution. Applying 14 proteogenomic and metabolomic platforms to 228 tumors (212 GBM and 16 grade 4 IDH-mutant astrocytoma), including 28 at recurrence, plus 18 normal brain samples and 14 brain metastases as comparators, reveals heterogeneous upstream alterations converging on common downstream events at the proteomic and metabolomic levels and changes in protein-protein interactions and glycosylation site occupancy at recurrence. Recurrent genetic alterations and phosphorylation events on PTPN11 map to important regulatory domains in three dimensions, suggesting a central role for PTPN11 signaling across high-grade gliomas.


Sujet(s)
Tumeurs du cerveau , Gliome , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Transduction du signal , Humains , Tumeurs du cerveau/génétique , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/métabolisme , Protein Tyrosine Phosphatase, Non-Receptor Type 11/génétique , Protein Tyrosine Phosphatase, Non-Receptor Type 11/métabolisme , Gliome/génétique , Gliome/anatomopathologie , Gliome/métabolisme , Mutation , Protéomique/méthodes , Maturation post-traductionnelle des protéines , Régulation de l'expression des gènes tumoraux , Glioblastome/génétique , Glioblastome/anatomopathologie , Glioblastome/métabolisme , Phosphorylation , Grading des tumeurs , Isocitrate dehydrogenases/génétique , Isocitrate dehydrogenases/métabolisme
8.
Sci Rep ; 14(1): 15267, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38961107

RÉSUMÉ

Recently, generative models have been gradually emerging into the extended dataset field, showcasing their advantages. However, when it comes to generating tabular data, these models often fail to satisfy the constraints of numerical columns, which cannot generate high-quality datasets that accurately represent real-world data and are suitable for the intended downstream applications. Responding to the challenge, we propose a tabular data generation framework guided by downstream task optimization (TDGGD). It incorporates three indicators into each time step of diffusion generation, using gradient optimization to align the generated fake data. Unlike the traditional strategy of separating the downstream task model from the upstream data synthesis model, TDGGD ensures that the generated data has highly focused columns feasibility in upstream real tabular data. For downstream task, TDGGD strikes the utility of tabular data over solely pursuing statistical fidelity. Through extensive experiments conducted on real-world tables with explicit column constraints and tables without explicit column constraints, we have demonstrated that TDGGD ensures increasing data volume while enhancing prediction accuracy. To the best of our knowledge, this is the first instance of deploying downstream information into a diffusion model framework.

9.
Int J Biol Macromol ; 276(Pt 1): 133826, 2024 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-39002908

RÉSUMÉ

Cotton gauze is commonly used in initial emergency care. However, its high hydrophilicity and limited clotting capacity can lead to the excessive absorption of blood, resulting in unnecessary blood loss. Herein, an amphiphilic Janus cotton gauze with excellent moisture management and enhanced blood coagulation has been developed via in situ generating bioactive glass (BG) onto the cotton gauze (CG), and then attaching cardanol (CA) onto one side of the BG-loaded CG (CG@BG) via click reaction. The Janus gauze (CA-CG@BG) has asymmetric wetting properties with a hydrophilic side (CA-CG@BGHL) and a hydrophobic side (HBCA-CG@BG). When applied to hemostatic, the porous and active BG on CA-CG@BGHL can rapidly initiate coagulation cascade to form a robust thrombus. CA on HBCA-CG@BG can entangled with each other, creating a hydrophobic barrier that prevents blood from flowing out. The hemostatic performance of CA-CG@BG is superior to that of CG in both rats and pigs. Interestingly, CA-CG@BG possesses unidirectional exudate removal. When applied to wound healing, the exudate can penetrate the hydrophobic HBCA-CG@BG to the hydrophilic CA-CG@BGHL, resulting in faster wound healing than CG. CA-CG@BG exhibits excellent cytocompatibility and hemocompatibility. This unique Janus dressing shows promise as a potential material for clinical applications in the future.

10.
BMC Pregnancy Childbirth ; 24(1): 480, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39014317

RÉSUMÉ

BACKGROUND: Antenatal depression is a significant public health issue affecting pregnant women both globally and in China. Using data from a mobile app-based screening programme, this study explored the prevalence and factors associated with antenatal depressive symptoms across different trimesters in Shenzhen. METHODS: A retrospective cross-sectional study was conducted on pregnant women who gave birth in any hospital in Shenzhen between July 2021 and May 2022 and underwent depression screening using an official maternal and infant health mobile app at least once during pregnancy. Depressive symptoms were evaluated using the 9-item Patient Health Questionnaire (PHQ-9), with cut-off scores of 5 and 10 for mild and high level of symptoms, respectively. The prevalence for each trimester was determined by calculating the proportion of women scoring 5 or higher. A variety of sociodemographic, obstetric, psychological, and lifestyle factors were assessed for their association with depressive symptoms. Chi-square test and multivariate logistic regression were performed to identify significant predictors. RESULTS: A total of 110,584 pregnant women were included in the study, with an overall prevalence of depressive symptoms of 18.0% and a prevalence of high-level symptoms of 4.2%. Depressive symptoms were most prevalent in the first trimester (10.9%) and decreased in the second (6.2%) and third trimesters (6.3%). Only a small proportion (0.4%) of women showed persistent depressive symptoms across all trimesters. Anxiety symptoms in early pregnancy emerged as the most significant predictor of depressive symptoms. Other factors linked to an increased risk throughout pregnancy include lower marital satisfaction, living with parents-in-law, experience of negative life events, as well as drinking before and during pregnancy. Factors associated with a reduced risk throughout pregnancy include multiparity and daily physical activity. CONCLUSIONS: This large-scale study provides valuable insights into the prevalence and factors associated with antenatal depressive symptoms in Shenzhen. The findings underscore the need for targeted interventions for high-risk groups and the integration of mental health care into routine antenatal services. Continuous, dynamic monitoring of depressive symptoms for pregnant women and ensuring at-risk women receive comprehensive follow-up and appropriate psychological or psychiatric care are crucial for effectively addressing antenatal depression and improving maternal and infant health outcomes.


Sujet(s)
Dépression , Applications mobiles , Complications de la grossesse , Trimestres de grossesse , Humains , Femelle , Grossesse , Chine/épidémiologie , Adulte , Dépression/épidémiologie , Dépression/diagnostic , Études transversales , Prévalence , Études rétrospectives , Complications de la grossesse/épidémiologie , Complications de la grossesse/psychologie , Trimestres de grossesse/psychologie , Dépistage de masse/méthodes , Femmes enceintes/psychologie , Facteurs de risque , Jeune adulte
11.
Biomark Res ; 12(1): 63, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38902829

RÉSUMÉ

Ischemic stroke (IS), a devastating cerebrovascular accident, presents with high mortality and morbidity. Following IS onset, a cascade of pathological changes, including excitotoxicity, inflammatory damage, and blood-brain barrier disruption, significantly impacts prognosis. However, current clinical practices struggle with early diagnosis and identifying these alterations. Metabolomics, a powerful tool in systems biology, offers a promising avenue for uncovering early diagnostic biomarkers for IS. By analyzing dynamic metabolic profiles, metabolomics can not only aid in identifying early IS biomarkers but also evaluate Traditional Chinese Medicine (TCM) efficacy and explore its mechanisms of action in IS treatment. Animal studies demonstrate that TCM interventions modulate specific metabolite levels, potentially reflecting their therapeutic effects. Identifying relevant metabolites in cerebral ischemia patients holds immense potential for early diagnosis and improved outcomes. This review focuses on recent metabolomic discoveries of potential early diagnostic biomarkers for IS. We explore variations in metabolites observed across different ages, genders, disease severity, and stages. Additionally, the review examines how specific TCM extracts influence IS development through metabolic changes, potentially revealing their mechanisms of action. Finally, we emphasize the importance of integrating metabolomics with other omics approaches for a comprehensive understanding of IS pathophysiology and TCM efficacy, paving the way for precision medicine in IS management.

12.
Cell Mol Biol Lett ; 29(1): 87, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38867189

RÉSUMÉ

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease and apolipoprotein E (APOE) genotypes (APOE2, APOE3, and APOE4) show different AD susceptibility. Previous studies indicated that individuals carrying the APOE2 allele reduce the risk of developing AD, which may be attributed to the potential neuroprotective role of APOE2. However, the mechanisms underlying the protective effects of APOE2 is still unclear. METHODS: We analyzed single-nucleus RNA sequencing and bulk RNA sequencing data of APOE2 and APOE3 carriers from the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort. We validated the findings in SH-SY5Y cells and AD model mice by evaluating mitochondrial functions and cognitive behaviors respectively. RESULTS: The pathway analysis of six major cell types revealed a strong association between APOE2 and cellular stress and energy metabolism, particularly in excitatory and inhibitory neurons, which was found to be more pronounced in the presence of beta-amyloid (Aß). Moreover, APOE2 overexpression alleviates Aß1-42-induced mitochondrial dysfunction and reduces the generation of reactive oxygen species in SH-SY5Y cells. These protective effects may be due to ApoE2 interacting with estrogen-related receptor alpha (ERRα). ERRα overexpression by plasmids or activation by agonist was also found to show similar mitochondrial protective effects in Aß1-42-stimulated SH-SY5Y cells. Additionally, ERRα agonist treatment improve the cognitive performance of Aß injected mice in both Y maze and novel object recognition tests. ERRα agonist treatment increased PSD95 expression in the cortex of agonist-treated-AD mice. CONCLUSIONS: APOE2 appears to enhance neural mitochondrial function via the activation of ERRα signaling, which may be the protective effect of APOE2 to treat AD.


Sujet(s)
Maladie d'Alzheimer , Peptides bêta-amyloïdes , Apolipoprotéine E2 , , Mitochondries , Neurones , Récepteurs des oestrogènes , Transduction du signal , Animaux , Femelle , Humains , Mâle , Souris , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/anatomopathologie , Peptides bêta-amyloïdes/métabolisme , Apolipoprotéine E2/génétique , Apolipoprotéine E2/métabolisme , Lignée cellulaire tumorale , Modèles animaux de maladie humaine , Mitochondries/métabolisme , Neurones/métabolisme , Espèces réactives de l'oxygène/métabolisme , Récepteurs des oestrogènes/métabolisme , Récepteurs des oestrogènes/génétique
13.
Antioxidants (Basel) ; 13(6)2024 Jun 02.
Article de Anglais | MEDLINE | ID: mdl-38929123

RÉSUMÉ

Aging is often accompanied by irreversible decline in body function, which causes a large number of age-related diseases and brings a huge economic burden to society and families. Many traditional Chinese medicines have been known to extend lifespan, but it has still been a challenge to isolate a single active molecule from them and verify the mechanism of anti-aging action. Drugs that inhibit senescence-associated secretory phenotypes (SASPs) are called "senomorphics". In this study, arctigenin (ATG), a senomorphic, was screened from the Chinese medicine Fructus arctii using K6001 yeast replicative lifespan. Autophagy, oxidative stress, and telomerase activity are key mechanisms related to aging. We found that ATG may act through multiple mechanisms to become an effective anti-aging molecule. In exploring the effect of ATG on autophagy, it was clearly observed that ATG significantly enhanced autophagy in yeast. We further verified that ATG can enhance autophagy by targeting protein phosphatase 2A (PP2A), leading to an increased lifespan. Meanwhile, we evaluated the antioxidant capacity of ATG and found that ATG increased the activities of the antioxidant enzymes, thereby reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels to improve the survival of yeast under oxidative stress. In addition, ATG was able to increase telomerase activity by enhancing the expression of EST1, EST2, and EST3 genes in yeast. In conclusion, ATG exerts anti-aging effects through induction of autophagy, antioxidative stress, and enhancement of telomerase activity in yeast, which is recognized as a potential molecule with promising anti-aging effects, deserving in-depth research in the future.

14.
Front Immunol ; 15: 1339722, 2024.
Article de Anglais | MEDLINE | ID: mdl-38903525

RÉSUMÉ

Background: A new aging biomarker epigenetic clock has been developed. There exists a close link between aging and gut microbiota, which may be mediated by inflammatory cytokines. However, the relationship between the epigenetic clock, gut microbiota, and the mediating substances is unclear. Methods: Two large genome-wide association meta-analyses were analyzed by two-sample Mendelian randomization. The results between gut microbiota and epigenetic clock were investigated using the four methods (Inverse variance weighted, MR-Egger, weighted median, MR-PRESSO). Genetic correlation was measured by Linked disequilibrium score regression (LDSC). The correctness of the study direction was checked by the Steiger test. Cochran's Q statistic and MR-Egger intercept were used as sensitivity analyses of the study. The two-step method was used to examine the mediating role of inflammatory cytokines. We use the Benjamini-Hochberg correction method to correct the P value. Results: After FDR correction, multiple bacterial genera were significantly or suggestively associated with four epigenetic clocks (GrimAge, HannumAge, IEAA, PhenoAge). And we detected several inflammatory factors acting as mediators of gut microbiota and epigenetic clocks. Conclusion: This study provides genetic evidence for a positive and negative link between gut microbiota and aging risk. We hope that by elucidating the genetic relationship and potential mechanisms between aging and gut microbiota, we will provide new avenues for continuing aging-related research and treatment.


Sujet(s)
Cytokines , Épigenèse génétique , Microbiome gastro-intestinal , Étude d'association pangénomique , Analyse de randomisation mendélienne , Microbiome gastro-intestinal/génétique , Humains , Cytokines/génétique , Cytokines/métabolisme , Vieillissement/génétique , Vieillissement/immunologie , Médiateurs de l'inflammation/métabolisme , Polymorphisme de nucléotide simple
15.
Int J Hyg Environ Health ; 260: 114404, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38878408

RÉSUMÉ

Lipid profiles are influenced by both noise and genetic variants. However, little is known about the associations of occupational noise and genetic variants with age-related changes in blood lipids, a crucial event in the initiation and evolution of atherosclerotic cardiovascular diseases. We aimed to evaluate the associations of blood lipid change rates with occupational noise and genetic variants in stress hormone biosynthesis-based genes. This cohort was established in 2012 and 2013 and was followed up until 2017. A total of 952 participants were included in the final analysis and all of them were categorized to two groups, the exposed group and control group, according to the exposed noise levels in their working area. Single nucleotide polymorphisms (SNPs) in stress hormone biosynthesis-based genes were genotyped. Five physical examinations were conducted from 2012 to 2017 and lipid measurements were repeated five times. The estimated annual changes (EACs) of blood lipid were calculated as the difference in blood lipid levels between any 2 adjacent examinations divided by their time interval (year). The generalized estimating equations for repeated measures analyses with exchangeable correlation structures were used to evaluate the influence of exposing to noise (versus being a control) and the SNPs mentioned above on the EACs of blood lipids. We found that the participants experienced accelerated age-related decline in high-density lipoprotein cholesterol (HDL-C) levels as they were exposed to noise (ß = -0.38, 95% confidence interval (CI), -0.66 to -0.10, P = 0.007), after adjusting for work duration, gender, smoking, alcohol consumption, and pack-years. This trend was only found in participants with COMT-rs165815 TT genotype (ß = -1.19, 95% CI, -1.80 to -0.58, P < 0.001), but not in those with the CC or CT genotypes. The interaction of noise exposure and rs165815 was marginally significant (Pinteraction = 0.010) after multiple adjustments. Compared with DDC-rs11978267 AA genotype carriers, participants carrying rs11978267 GG genotype had decreased EAC of triglycerides (TG) (ß = -5.06, 95% CI, -9.07 to -1.05, P = 0.013). Participants carrying DBH-rs4740203 CC genotype had increased EAC of total cholesterol (TC) (ß = 1.19, 95% CI, 0.06 to 2.33, P = 0.039). However, these findings were not statistically significant after multiple adjustments. These results indicated that Occupational noise exposure was associated with accelerated age-related decreases in HDL-C levels, and the COMT-rs165815 genotype appeared to modify the effect of noise exposure on HDL-C changes among the occupational population.


Sujet(s)
Bruit au travail , Polymorphisme de nucléotide simple , Humains , Mâle , Chine , Adulte , Femelle , Études longitudinales , Adulte d'âge moyen , Lipides/sang , Cholestérol HDL/sang , Triglycéride/sang
16.
Curr Med Imaging ; 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38874028

RÉSUMÉ

BACKGROUND: Radiomics can quantify pulmonary nodule characteristics non-invasively by applying advanced imaging feature algorithms. Radiomic textural features derived from Computed Tomography (CT) imaging are broadly used to predict benign and malignant pulmonary nodules. However, few studies have reported on the radiomics-based identification of nodular Pulmonary Cryptococcosis (PC). OBJECTIVE: This study aimed to evaluate the diagnostic and differential diagnostic value of radiomic features extracted from CT images for nodular PC. METHODS: This retrospective analysis included 44 patients with PC (29 males, 15 females), 58 with Tuberculosis (TB) (39 males, 19 females), and 60 with Lung Cancer (LC) (20 males, 40 females) confirmed pathologically. Models 1 (PC vs. non-PC), 2 (PC vs. TB), and 3 (PC vs. LC) were established using radiomic features. Models 4 (PC vs. TB) and 5 (PC vs. LC) were established based on radiomic and CT features. RESULTS: Five radiomic features were predictive of PC vs. non-PC model, but accuracy and Area Under the Curve (AUC) were 0.49 and 0.472, respectively. In model 2 (PC vs. TB) involving six radiomic features, the accuracy and AUC were 0.80 and 0.815, respectively. Model 3 (PC vs. LC) with six radiomic features performed well, with AUC=0.806 and an accuracy of 0.76. Between the PC and TB groups, model 4 combining radiomics, distribution, and PI, showed AUC=0.870. In differentiating PC from LC, the combination of radiomics, distribution, PI, and RBNAV achieved AUC=0.926 and an accuracy of 0.90. CONCLUSION: The prediction models based on radiomic features from CT images performed well in discriminating PC from TB and LC. The individualized prediction models combining radiomic and CT features achieved the best diagnostic performance.

17.
J Neurochem ; 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38822659

RÉSUMÉ

The relationship between peripheral inflammatory markers, their dynamic changes, and the disease severity of myasthenia gravis (MG) is still not fully understood. Besides, the possibility of using it to predict the short-term poor outcome of MG patients have not been demonstrated. This study aims to investigate the relationship between peripheral inflammatory markers and their dynamic changes with Myasthenia Gravis Foundation of America (MGFA) classification (primary outcome) and predict the short-term poor outcome (secondary outcome) in MG patients. The study retrospectively enrolled 154 MG patients from June 2016 to December 2021. The logistic regression was used to investigate the relationship of inflammatory markers with MGFA classification and determine the factors for model construction presented in a nomogram. Finally, net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were utilized to evaluate the incremental capacity. Logistic regression revealed significant associations between neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), aggregate index of systemic inflammation (AISI) and MGFA classification (p = 0.013, p = 0.032, p = 0.017, respectively). Incorporating dynamic changes of inflammatory markers into multivariable models improved their discriminatory capacity of disease severity, with significant improvements observed for NLR, systemic immune-inflammation index (SII) and AISI in NRI and IDI. Additionally, AISI was statistically associated with short-term poor outcome and a prediction model incorporating dynamic changes of inflammatory markers was constructed with the area under curve (AUC) of 0.953, presented in a nomograph. The inflammatory markers demonstrate significant associations with disease severity and AISI could be regarded as a possible and easily available predictive biomarker for short-term poor outcome in MG patients.

18.
J Chem Inf Model ; 64(13): 5317-5327, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38900583

RÉSUMÉ

Combination therapy is an important direction of continuous exploration in the field of medicine, with the core goals of improving treatment efficacy, reducing adverse reactions, and optimizing clinical outcomes. Machine learning technology holds great promise in improving the prediction of drug synergy combinations. However, most studies focus on single disease-oriented collaborative predictive models or involve excessive feature categories, making it challenging to predict the majority of new drugs. To address these challenges, the DrugSK comprehensive model was developed, which utilizes SMILES-BERT to extract structural information from 3492 drugs and trains on reactions from 48,756 drug combinations. DrugSK is an integrated learning model capable of predicting interactions among various drug categories. First, the primary learner is trained from the initial data set. Random forest, support vector machine, and XGboost model are selected as primary learners and logistic regression as secondary learners. A new data set is then "generated" to train level 2 learners, which can be thought of as a prediction for each model. Finally, the results are filtered using logistic regression. Furthermore, the combination of the new antibacterial drug Drafloxacin with other antibacterial agents was tested. The synergistic effect of Drafloxacin and Isavuconazonium in the fight against Candida albicans has been confirmed, providing enlightenment for the clinical treatment of skin infection. DrugSK's prediction is accurate in practical application and can also predict the probability of the outcome. In addition, the tendency of Drafloxacin and antifungal drugs to be synergistic was found. The development of DrugSK will provide a new blueprint for predicting drug combination synergies.


Sujet(s)
Apprentissage machine , Humains , Association médicamenteuse , Antibactériens/pharmacologie , Antibactériens/composition chimique , Candida albicans/effets des médicaments et des substances chimiques , Association de médicaments
19.
J Ethnopharmacol ; 333: 118404, 2024 Oct 28.
Article de Anglais | MEDLINE | ID: mdl-38824977

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: Sepsis presents complex pathophysiological challenges. Taohe Chengqi Decoction (THCQ), a traditional Chinese medicine, offers potential in managing sepsis-related complications, though its exact mechanisms are not fully understood. AIM OF THE STUDY: This research aimed to assess the therapeutic efficacy and underlying mechanisms of THCQ on sepsis-induced lung injury. MATERIALS AND METHODS: The study began with validating THCQ's anti-inflammatory effects through in vitro and in vivo experiments. Network pharmacology was employed for mechanistic exploration, incorporating GO, KEGG, and PPI analyses of targets. Hub gene-immune cell correlations were assessed using CIBERSORT, with further scrutiny at clinical and single-cell levels. Molecular docking explored THCQ's drug-gene interactions, culminating in qPCR and WB validations of hub gene expressions in sepsis and post-THCQ treatment scenarios. RESULTS: THCQ demonstrated efficacy in modulating inflammatory responses in sepsis, identified through network pharmacology. Key genes like MAPK14, MAPK3, MMP9, STAT3, LYN, AKT1, PTPN11, and HSP90AA1 emerged as central targets. Molecular docking revealed interactions between these genes and THCQ components. qPCR results showed significant modulation of these genes, indicating THCQ's potential in reducing inflammation and regulating immune responses in sepsis. CONCLUSION: This study sheds light on THCQ's anti-inflammatory and immune regulatory mechanisms in sepsis, providing a foundation for further research and potential clinical application.


Sujet(s)
Anti-inflammatoires , Médicaments issus de plantes chinoises , Simulation de docking moléculaire , Sepsie , Sepsie/traitement médicamenteux , Sepsie/complications , Sepsie/immunologie , Animaux , Médicaments issus de plantes chinoises/pharmacologie , Médicaments issus de plantes chinoises/usage thérapeutique , Médicaments issus de plantes chinoises/composition chimique , Anti-inflammatoires/pharmacologie , Anti-inflammatoires/usage thérapeutique , Mâle , Souris , Souris de lignée C57BL , Humains , Lésion pulmonaire/traitement médicamenteux , Pharmacologie des réseaux , Modèles animaux de maladie humaine
20.
J Colloid Interface Sci ; 674: 1-8, 2024 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-38908061

RÉSUMÉ

O3 phase layered oxides are highly attractive cathode materials for sodium-ion batteries because of their high capacity and decent initial Coulombic efficiency. However, their rate capability and long cycling life are unsatisfactory due to the narrow Na+ transfer channel and irreversible phase transitions of O3 phase during sodiation/desodiation process. Constructing O3/P2 multiphase structures has been proven to be an effective strategy to overcome these challenges. In this study, we synthesized bi-phasic structured O3/P2 Na(Ni2/9Fe1/3Cu1/9Mn1/3)1-xMnxO2 (x = 0.01, 0.02, 0.03, 0.04, 0.05) materials through Mn doping during sodiation process. Benefiting from surface P2 phase layer with the enhanced Na+ transfer dynamics and high structural stability, the Na(Ni2/9Fe1/3Cu1/9Mn1/3)0.98Mn0.02O2 (NFCM-M2) cathode delivers a reversible capacity of 139.1 mA h g-1 at 0.1 C, and retains 71.4 % of its original capacity after 300 cycles at 1 C. Our work provides useful guidance for designing multiphase cathodes and offers new insights into the structure-performance correlation for sodium-ion cathode materials.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE