Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 191
Filtrer
1.
Article de Anglais | MEDLINE | ID: mdl-38970621

RÉSUMÉ

As an emerging two-dimensional (2D) material, MXene has garnered significant interest in advanced energy storage systems, yet the stackable structure, poor mechanical stability, and lack of moldability limit its large-scale applications. To address this challenge, herein, the self-assembly of MXene on carbonization-free wood was obtained to serve as high-performance electrodes for symmetrical all-wood eco-supercapacitors by a steam-driven self-assembly method. This method can be implemented in a low-temperature environment, significantly simplifying traditional high-temperature annealing processes and generating minimal impact on the environment, human health, and resource consumption. The environmentally friendly steam-driven self-assembly strategy can be further extended into various wood-based electrodes, regardless of the types and structures of wood. As a typical platform electrode, the optimized MXene@delignified balsa wood (MDBW) achieves high areal capacitance and specific capacitance values of 2.99 F cm-2 and 580.55 F g-1 at an extensive mass loading of 5.16 mg cm-2, respectively, with almost loss-free capacitance after 10,000 cycles at 50 mA cm-2. In addition, an all-solid-state symmetrical all-wood eco-supercapacitor was further assembled based on MDBW-20 as both positive and negative electrodes to achieve a high energy density of 19.22 µWh cm-2 at a power density of 0.58 mW cm-2. This work provides an effective strategy to optimize wood-based electrodes for the practical application of biomass eco-supercapacitors.

2.
J Colloid Interface Sci ; 675: 275-292, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38970913

RÉSUMÉ

Azo compounds, particularly azo dyes, are widely used but pose significant environmental risks due to their persistence and potential to form carcinogenic by-products. Advanced oxidation processes (AOPs) are effective in degrading these stubborn compounds, with Oxone activation being a particularly promising method. In this study, a unique nanohybrid material, raspberry-like CuCo alloy embedded carbon (RCCC), is facilely fabricated using CuCo-glycerate (Gly) as a template. With the incorporation of Cu into Co, RCCC is essentially different from its analogue derived from Co-Gly in the absence of Cu, affording a popcorn-like Co embedded on carbon (PCoC). RCCC exhibits a unique morphology, featuring a hollow spherical layer covered by nanoscale beads composed of CuCo alloy distributed over carbon. Therefore, RCCC significantly outperforms PCoC and Co3O4 for activating Oxone to degrade the toxic azo contaminant, Azorubin S (AS), in terms of efficiency and kinetics. Furthermore, RCCC remains highly effective in environments with high NaCl concentrations and can be efficiently reused across multiple cycles. Besides, RCCC also leads to the considerably lower Ea of AS degradation than the reported Ea values by other catalysts. More importantly, the contribution of incorporating Cu with Co as CuCo alloy in RCCC is also elucidated using the Density-Function-Theory (DFT) calculation and synergetic effect of Cu and Co in CuCo contributes to enhance Oxone activation, and boosts generation of SO4•-and •OH. The decomposition pathway of AS by RCCC + Oxone is also comprehensively investigated by studying the Fukui indices of AS and a series of its degradation by-products using the DFT calculation. In accordance to the toxicity assessment, RCCC + Oxone also considerably reduces acute and chronic toxicities to lower potential environmental impact. These results ensure that RCCC would be an advantageous catalyst for Oxone activation to degrade AS in water.

3.
Medicina (Kaunas) ; 60(6)2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38929506

RÉSUMÉ

Background and Objectives: The pancreatic solid pseudopapillary neoplasm (SPN), a rare tumor predominantly affecting young women, has seen an increased incidence due to improved imaging and epidemiological knowledge. This study aimed to understand the outcomes of different interventions, possible complications, and associated risk factors. Materials and Methods: This study retrospectively analyzed 24 patients who underwent pancreatic surgery for SPNs between September 1998 and July 2020. Results: Surgical intervention, typically required for symptomatic cases or pathological confirmation, yielded favorable outcomes with a 5-year survival rate of up to 97%. Despite challenges in standardizing preoperative evaluation and follow-up protocols, aggressive complete resection showed promising long-term survival and good oncological outcomes. Notably, no significant differences were found between conventional and minimally invasive (MI) surgery in perioperative outcomes. Histopathological correlations were lacking in prognosis and locations. Among the patients, one developed diffuse liver metastases 41 months postoperatively but responded well to chemotherapy and transcatheter arterial chemoembolization, with disease stability observed at 159 postoperative months. Another patient developed nonalcoholic steatohepatitis after surgery and underwent liver transplantation, succumbing to poor medication adherence 115 months after surgery. Conclusions: These findings underscore the importance of surgical intervention in managing SPNs and suggest the MI approach as a viable option with comparable outcomes to conventional surgery.


Sujet(s)
Tumeurs du pancréas , Humains , Femelle , Tumeurs du pancréas/chirurgie , Adulte , Études rétrospectives , Mâle , Adulte d'âge moyen , Résultat thérapeutique , Pancréatectomie/méthodes , Jeune adulte , Carcinome papillaire/chirurgie , Carcinome papillaire/anatomopathologie , Adolescent , Sujet âgé
4.
Environ Res ; 258: 119441, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38901813

RÉSUMÉ

Water pollution has caused problems in coastal areas, rivers, lakes, and other important water sources around the world as a result of inappropriate waste management. Meanwhile, these pollutants are harmful to humans and aquatic life. Textile dye effluent methyl orange (MO) was used in this work for dye degradation studies employing nanocomposites. As a result, the importance of synthesizing pure ZnO and Co3O4 nanoparticles with composites of ZnCo2O4 (zinc cobaltite) nanorods in three various proportions (90:10, 75:25, and 50:50) is emphasized in this study. Many advanced approaches were used to assess the various features of these materials, including size and shape. Fourier transform infrared (FT-IR) spectroscopy was used to determine the vibrational modes of the materials. The absorption measurements were then carried out using UV-vis spectroscopic techniques, and the photocatalytic breakdown of MO was done under visible light irradiation. The findings revealed that pure materials were inadequate for visible light activity, resulting in decreased degradation efficiencies. Spinel cobaltite structures have potential degradation efficiency under visible light, while ZnCo2O4 (50:50) catalyst has superior degradation efficiency of 59.8% over MO. The crystallite size, morphology, functional group, absorption wavelength, and band gap all play important roles in enhancing the material's photocatalytic activity under visible light. Meanwhile, ZnCo2O4 spinel structures are crucial for increasing charge carriers and reducing electron-hole recombination. As a result, zinc cobaltite minerals are widely used in industrial dye degradation applications.

5.
Environ Res ; 256: 119181, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38768884

RÉSUMÉ

Microplastic contamination has rapidly become a serious environmental issue, threatening marine ecosystems and human health. This review aims to not only understand the distribution, impacts, and transfer mechanisms of microplastic contamination but also to explore potential solutions for mitigating its widespread impact. This review encompasses the categorisation, origins, and worldwide prevalence of microplastics and methodically navigates the complicated structure of microplastics. Understanding the sources of minute plastic particles infiltrating water bodies worldwide is critical for successful removal. The presence and accumulation of microplastics has far reaching negative impacts on various marine creatures, eventually extending its implications to human health. Microplastics are known to affect the metabolic activities and the survival of microbial communities, phytoplankton, zooplankton, and fauna present in marine environments. Moreover, these microplastics cause developmental abnormalities, endocrine disruption, and several metabolic disorders in humans. These microplastics accumulates in aquatic environments through trophic transfer mechanisms and biomagnification, thereby disrupting the delicate balance of these ecosystems. The review also addresses the tactics for minimising the widespread impact of microplastics by suggesting practical alternatives. These include increasing public awareness, fostering international cooperation, developing novel cleanup solutions, and encouraging the use of environment-friendly materials. In conclusion, this review examines the sources and prevalence of microplastic contamination in marine environment, its impacts on living organisms and ecosystems. It also proposes various sustainable strategies to mitigate the problem of microplastics pollution. Also, the current challenges associated with the mitigation of these pollutants have been discussed and addressing these challenges require immediate and collective action for restoring the balance in marine ecosystems.


Sujet(s)
Écosystème , Microplastiques , Polluants chimiques de l'eau , Microplastiques/analyse , Polluants chimiques de l'eau/analyse , Nanotechnologie , Animaux , Surveillance de l'environnement/méthodes , Humains
6.
Environ Res ; 252(Pt 4): 119143, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38751000

RÉSUMÉ

In this study, biochar derived from chestnut shells was synthesized through pyrolysis at varying temperatures from 300 °C to 900 °C. The study unveiled that the pyrolysis temperature is pivotal in defining the physical and chemical attributes of biochar, notably its adsorption capabilities and its role in activating peracetic acid (PAA) for the efficient removal of acetaminophen (APAP) from aquatic environments. Notably, the biochar processed at 900 °C, referred to as CN900, demonstrated an exceptional adsorption efficiency of 55.8 mg g-1, significantly outperforming its counterparts produced at lower temperatures (CN300, CN500, and CN700). This enhanced performance of CN900 is attributed to its increased surface area, improved micro-porosity, and a greater abundance of oxygen-containing functional groups, which are a consequence of the elevated pyrolysis temperature. These oxygen-rich functional groups, such as carbonyls, play a crucial role in facilitating the decomposition of the O-O bond in PAA, leading to the generation of reactive oxygen species (ROS) through electron transfer mechanisms. This investigation contributes to the development of sustainable and cost-effective materials for water purification, underscoring the potential of chestnut shell-derived biochar as an efficient adsorbent and catalyst for PAA activation, thereby offering a viable solution for environmental cleanup efforts.


Sujet(s)
Acétaminophène , Charbon de bois , Acide peracétique , Pyrolyse , Polluants chimiques de l'eau , Charbon de bois/composition chimique , Acétaminophène/composition chimique , Polluants chimiques de l'eau/composition chimique , Acide peracétique/composition chimique , Adsorption , Purification de l'eau/méthodes
7.
Environ Pollut ; 350: 123970, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38636839

RÉSUMÉ

This study presents the synthesis of a novel composite catalyst, ZIF-67, doped on sodium bicarbonate-modified biochar derived from kumquat peels (ZIF-67@KSB3), for the enhanced activation of peracetic acid (PAA) in the degradation of acetaminophen (APAP) in aqueous solutions. The composite demonstrated a high degradation efficiency, achieving 94.3% elimination of APAP at an optimal condition of 200 mg L-1 catalyst dosage and 0.4 mM PAA concentration at pH 7. The degradation mechanism was elucidated, revealing that superoxide anion (O2•-) played a dominant role, while singlet oxygen (1O2) and alkoxyl radicals (R-O•) also contributed significantly. The degradation pathways of APAP were proposed based on LC-MS analyses and molecular electrostatic potential calculations, identifying three primary routes of transformation. Stability tests confirmed that the ZIF-67@KSB3 catalyst retained an 86% efficiency in APAP removal after five successive cycles, underscoring its durability and potential for application in pharmaceutical wastewater treatment.


Sujet(s)
Acétaminophène , Charbon de bois , Acide peracétique , Polluants chimiques de l'eau , Zéolites , Acétaminophène/composition chimique , Charbon de bois/composition chimique , Polluants chimiques de l'eau/composition chimique , Zéolites/composition chimique , Acide peracétique/composition chimique , Prunus armeniaca/composition chimique , Imidazoles/composition chimique , Eaux usées/composition chimique , Catalyse , Élimination des déchets liquides/méthodes
8.
Environ Res ; 252(Pt 3): 118990, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38670214

RÉSUMÉ

This study aimed to investigate bone char's physicochemical transformations through co-torrefaction and co-pyrolysis processes with biomass. Additionally, it aimed to analyze the carbon sequestration process during co-torrefaction of bone and biomass and optimize the process parameters of co-torrefaction. Finally, the study sought to evaluate the arsenic sorption capacity of both torrefied and co-torrefied bone char. Bone and biomass co-torrefaction was conducted at 175 °C-300 °C. An orthogonal array of Taguchi techniques and artificial neural networks (ANN) were employed to investigate the influence of various torrefaction parameters on carbon dioxide sequestration within torrefied bone char. A co-torrefied bone char, torrefied at a reaction temperature of 300 °C, a heating rate of 15 °C·min-1, and mixed with 5 g m of biomass (wood dust), was selected for the arsenic (III) sorption experiment due to its elevated carbonate content. The results revealed a higher carbonate fraction (21%) in co-torrefied bone char at 300 °C compared to co-pyrolyzed bone char (500-700 °C). Taguchi and artificial neural network (ANN) analyses indicated that the relative impact of process factors on carbonate substitution in bone char followed the order of co-torrefaction temperature (38.8%) > heating rate (31.06%) > addition of wood biomass (30.1%). Co-torrefied bone chars at 300 °C exhibited a sorption capacity of approximately 3 mg g-1, surpassing values observed for pyrolyzed bone chars at 900 °C in the literature. The findings suggest that co-torrefied bone char could serve effectively as a sorbent in filters for wastewater treatment and potentially fulfill roles such as a remediation agent, pH stabilizer, or valuable source of biofertilizer in agricultural applications.


Sujet(s)
Arsenic , Biomasse , Charbon de bois , Eaux usées , Polluants chimiques de l'eau , Arsenic/analyse , Arsenic/composition chimique , Charbon de bois/composition chimique , Eaux usées/composition chimique , Polluants chimiques de l'eau/analyse , Polluants chimiques de l'eau/composition chimique , Adsorption , Os et tissu osseux/composition chimique , , Animaux , Pyrolyse
9.
Opt Lett ; 49(8): 2077-2080, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38621080

RÉSUMÉ

This article presents an all-epitaxy approach to reduce the root mean square spectral width (ΔλR M S) of 850 nm oxide-confined vertical cavity surface-emitting lasers (VCSELs) with a large aperture of 7 µm through strategic optimization of the oxide guiding layer within the epitaxy structure. At 75°C, the VCSEL demonstrates a ΔλR M S of ∼0.3 nm at a bias current of 7.5 mA. Furthermore, the VCSEL achieves successful transmission of 26.5625 Gbaud PAM-4 modulation over a short-reach (SR) OM4 fiber link while maintaining a TDECQ budget below the 4.5 dB specified by 50G IEEE Ethernet standards.

10.
Opt Express ; 32(4): 6609-6618, 2024 Feb 12.
Article de Anglais | MEDLINE | ID: mdl-38439360

RÉSUMÉ

This research successfully developed an independent Ge-based VCSEL epitaxy and fabrication technology route, which set the stage for integrating AlGaAs-based semiconductor devices on bulk Ge substrates. This is the second successful Ge-based VCSEL technology reported worldwide and the first Ge-based VCSEL technology with key details disclosed, including Ge substrate specification, transition layer structure and composition, and fabrication process. Compared with the GaAs counterparts, after epitaxy optimization, the Ge-based VCSEL wafer has a 40% lower surface root-mean-square roughness and 72% lower average bow-warp. After device fabrication, the Ge-based VCSEL has a 10% lower threshold current density and 19% higher maximum optical differential efficiency than the GaAs-based VCSEL.

11.
Sci Total Environ ; 921: 171254, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38408659

RÉSUMÉ

Torrefaction is an effective pathway for microalgal solid biofuel upgrading, and alkali metal activation is also an efficient method to enhance fuel properties. This study explores the comparison of torrefaction alone and KOH activation combined with torrefaction to determine a better operation for biochar production from the microalga Nannochloropsis Oceanica. The results indicate that the HHV ranges of KOH-activated biochar and unactivated biochar are 25.611-32.792 MJ·kg-1 and 25.024-26.389 MJ·kg-1, respectively. Furthermore, KOH-activated biochar is better than unactivated biochar, with less residue, broader pyrolysis and combustion temperature ranges, higher elemental carbon, and less combined carbon. Moreover, KOH-activated biochar is close to the unactivated one from the viewpoint of expense calculation and life cycle assessment and thus possesses a better comprehensive performance. Overall, KOH activation is an efficient method for upgrading microalgal solid biofuel. The results are conducive to exploring further modification of microalgal solid biofuel production with better properties, thus leading to a greener and more efficient approach for upgrading fuel performance.


Sujet(s)
Microalgues , Eau/composition chimique , Biocarburants , Biomasse , Charbon de bois , Température
12.
Opt Lett ; 49(3): 586-589, 2024 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-38300065

RÉSUMÉ

In this Letter, we present a comprehensive analysis of the high-speed performance of 940 nm oxide-confined AlGaAs vertical-cavity surface-emitting lasers (VCSELs) grown on Ge substrates. Our demonstration reveals a pronounced superiority of Ge-based VCSELs in terms of thermal stability. The presented Ge-VCSEL has a maximum modulation bandwidth of 16.1 GHz and successfully realizes a 25 Gb/s NRZ transmission at 85 ∘C. The experimental results underscore the significance and potential of Ge-VCSELs for applications requiring robust performance in high-temperature environments, laying the cornerstone for the future development of VCSEL devices.

13.
Environ Res ; 246: 118154, 2024 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-38218520

RÉSUMÉ

The management of plastic waste (PW) has become an indispensable worldwide issue because of the enhanced accumulation and environmental impacts of these waste materials. Thermo-catalytic pyrolysis has been proposed as an emerging technology for the valorization of PW into value-added liquid fuels. This review provides a comprehensive investigation of the latest advances in thermo-catalytic pyrolysis of PW for liquid fuel generation, by emphasizing polyethylene, polypropylene, and polystyrene. To this end, the current strategies of PW management are summarized. The various parameters affecting the thermal pyrolysis of PW (e.g., temperature, residence time, heating rate, pyrolysis medium, and plastic type) are discussed, highlighting their significant influence on feed reactivity, product yield, and carbon number distribution of the pyrolysis process. Optimizing these parameters in the pyrolysis process can ensure highly efficient energy recovery from PW. In comparison with non-catalytic PW pyrolysis, catalytic pyrolysis of PW is considered by discussing mechanisms, reaction pathways, and the performance of various catalysts. It is established that the introduction of either acid or base catalysts shifts PW pyrolysis from the conventional free radical mechanism towards the carbonium ion mechanism, altering its kinetics and pathways. This review also provides an overview of PW pyrolysis practicality for scaling up by describing techno-economic challenges and opportunities, environmental considerations, and presenting future outlooks in this field. Overall, via investigation of the recent research findings, this paper offers valuable insights into the potential of thermo-catalytic pyrolysis as an emerging strategy for PW management and the production of liquid fuels, while also highlighting avenues for further exploration and development.


Sujet(s)
Polystyrènes , Pyrolyse , Polyènes , Polyéthylène , Matières plastiques
14.
Environ Res ; 247: 118227, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38253192

RÉSUMÉ

The current study aimed to assess the effectiveness of biochar formed from algae in the removal of Cr(VI) through the process of impregnating brown algae Sargassum hemiphyllum with KHCO3. The synthesis of KHCO3-activated biochar (KBAB-3), demonstrating remarkable adsorption capabilities for Cr(VI), was accomplished utilizing a mixture of brown algae and KHCO3 in a mass ratio of 1:3, followed by calcination at a temperature of 700 °C. Based on the empirical evidence, it can be observed that KBAB-3 shown a significant ability to adsorb Cr(VI) within a range of 60-160 mg g-1 across different environmental conditions. In addition, the KBAB-3 material demonstrated the advantageous characteristic of easy separation, allowing for the continued maintenance of a high efficiency in removing Cr(VI) even after undergoing numerous cycles of reuse. In conclusion, the application of KBAB-3, a novel adsorbent, exhibits considerable prospects for effective removal of Cr(VI) from diverse water sources in the near future.


Sujet(s)
Charbon de bois , Phaeophyceae , Polluants chimiques de l'eau , Adsorption , Polluants chimiques de l'eau/analyse , Chrome/analyse , Eau , Cinétique
15.
Environ Pollut ; 341: 122911, 2024 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-37967712

RÉSUMÉ

Wood boards used in construction are generally treated with toxic chemicals, making them unsuitable for further use and causing environmental pollution. This study evaluates the possibility of using catalytic torrefaction as a pretreatment to improve wood pyrolysis and combustion for greener biochar production. Waste beech boards were impregnated with different K2CO3 solutions (0-0.012 M), then torrefied between 5 and 60 min at 275 °C. The ICP-AES showed that the board's surface held more potassium than the core. Torrefaction coupled with potassium decreased the C-O and -OH stretches. Thermogravimetric analysis of torrefied wood showed that the board's internal heating degraded the core more than the surface. The exothermic reactions made potassium's catalytic action more efficient in the core. Interactions between the potassium content and torrefaction duration decreased the pyrolysis' maximum devolatilization temperature. During combustion, potassium decreased the ignition temperature by up to 9% and 3% at the surface and core, respectively, while the torrefaction increased it. The catalytic torrefaction significantly decreased the devolatilization peak during combustion, thus making the wood's combustion similar to that of coal, having only the char oxidation step. These findings highlight the advantages and challenges of waste wood's catalytic-torrefaction for biochar production to reduce environmental pollution.


Sujet(s)
Assainissement et restauration de l'environnement , Biomasse , Température , Potassium
16.
J Hazard Mater ; 465: 133154, 2024 03 05.
Article de Anglais | MEDLINE | ID: mdl-38103286

RÉSUMÉ

Using bone char for contaminated wastewater treatment and soil remediation is an intriguing approach to environmental management and an environmentally friendly way of recycling waste. The bone char remediation strategy for heavy metal-polluted wastewater was primarily affected by bone char characteristics, factors of solution, and heavy metal (HM) chemistry. Therefore, the optimal parameters of HM sorption by bone char depend on the research being performed. Regarding enhancing HM immobilization by bone char, a generic strategy for determining optimal parameters and predicting outcomes is crucial. The primary objective of this research was to employ artificial neural network (ANN) technology to determine the optimal parameters via sensitivity analysis and to predict objective function through simulation. Sensitivity analysis found that for multi-metals sorption (Cd, Ni, and Zn), the order of significance for pyrolysis parameters was reaction temperature > heating rate > residence time. The primary variables for single metal sorption were solution pH, HM concentration, and pyrolysis temperature. Regarding binary sorption, the incubation parameters were evaluated in the following order: HM concentrations > solution pH > bone char mass > incubation duration. This approach can be used for further experiment design and improve the immobilization of HM by bone char for water remediation.


Sujet(s)
Métaux lourds , Polluants du sol , Polluants chimiques de l'eau , Purification de l'eau , Eau ,
17.
iScience ; 26(10): 107874, 2023 Oct 20.
Article de Anglais | MEDLINE | ID: mdl-37860755

RÉSUMÉ

According to statistics, low-temperature waste heat below 300°C accounts for more than 89% of industrial waste heat. If the waste heat is not recycled, a large amount of low-temperature waste heat will be released into the atmosphere, thereby exacerbating global warming and posing a significant threat to human survival. Although the power generation efficiency of solid-state thermoelectric generation technology is lower than the organic Rankine cycle, it only requires a smaller construction area, which increases its market acceptance, applicability, and penetration. Especially in the pursuit of net-zero emissions by global companies, the importance of low-temperature waste heat recovery and power generation is even more prominent. The current thermoelectric conversion efficiency of commercial thermoelectric chips is about 5%. Power generation cost, thermoelectric conversion efficiency, and energy use efficiency are highly correlated with the commercialization of solid-state thermoelectric technology. This research shares five practical waste heat power generation cases commercialized by recycling three heat sources. It also points out the three significant challenges facing the commercialization of power generation from low-temperature waste heat recovery. This study analyzes 2,365 TEG patents submitted by 28 companies worldwide to determine the basic technology for realizing waste heat recovery through TEG and explore the potential commercialization of related waste heat recovery products. The future challenge for the large-scale commercialization of solid-state thermoelectric technology is not technological development but financial incentives related to changes in international energy prices and subsidies that promote zero carbon emissions.

18.
Semin Oncol Nurs ; 39(6): 151512, 2023 12.
Article de Anglais | MEDLINE | ID: mdl-37827902

RÉSUMÉ

OBJECTIVE: This study aims to investigate the effectiveness of an upper limb rehabilitation program on the quality of life in patients who had been first diagnosed breast cancer and subsequently underwent mastectomy. DATA SOURCES: This randomized controlled trial enrolled 48 breast cancer patients who underwent mastectomy at a medical center in Taiwan. The patients were randomly assigned to either the intervention group (n = 24) or control group (n = 24). The patients in the intervention group participated in a 12-week upper limb rehabilitation program involving face-to-face upper limb rehabilitation education and once-a month monitoring of their upper extremity activity. The control group received standard nursing care. Quality of life was assessed through EORTC QLQ-C30 and QLQ-BR 23 questionnaires at baseline and weeks 4, 8, and 12 after enrollment. RESULTS: Both the intervention and control groups had significantly improved their levels of functioning, symptoms, and quality of life from baseline to week 12 after enrollment. The intervention group showed greater improvements in functioning and symptom levels after the intervention compared to the control group; however, no statistically significant differences were found. Additionally, the levels of global health status/quality of life in both groups gradually increased from baseline to week 12 CONCLUSION: An upper limb rehabilitation program is effective in improving the functioning and symptoms of breast cancer patients who have undergone mastectomy. IMPLICATIONS FOR NURSING PRACTICE: Patients are encouraged to undergo upper limb rehabilitation in order to improve their functioning, symptoms and quality of life.


Sujet(s)
Tumeurs du sein , Humains , Femelle , Tumeurs du sein/chirurgie , Tumeurs du sein/rééducation et réadaptation , Mastectomie , Qualité de vie , Membre supérieur/chirurgie
19.
Chemosphere ; 345: 140418, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37844702

RÉSUMÉ

Carbon-integrated binary metal oxide semiconductors have gained prominence in the last decade as a better material for photocatalytic wastewater treatment technology. In this regard, this research describes the investigation of the binary metal oxide TiO2@Fe3O4 embedded on reduced graphene oxide (rGO) nanosheets synthesized through a combination of sol-gel, chemical precipitation, and Hummer's processes. Besides, the catalyst is applied for the photocatalytic degradation of organic chlorophenol pollutants. The characterized diffraction results showed the peak broadening of the rGO-TiO2@Fe3O4 composite formed with tetragonal and cubic structures having small crystallite sizes. The TEM observation shows an enormous miniature of TiO2@Fe3O4 nanospheres spread on the folded 2D-rGO nanosheets with a large BET surface area. The XPS result holds the mixed phases of Fe3O4 and Fe2O3. Finally, the catalyst demonstrated a low band gap with extended light absorption towards visible light irradiation. The synergistic interactions between Fe3+ and Fe2+ improved the visible light activity due to the incorporation of rGO, and also possessed good recycling capacity. The increased mobility of electrons at the interfaces of TiO2 and Fe3O4 due to the mixing of rGO results in the separation of charge carriers by elevating the photocatalytic degradation efficiency of chlorophenol.


Sujet(s)
Chlorophénols , Graphite , Eaux usées , Graphite/composition chimique , Lumière , Oxydes/composition chimique , Chlorophénols/composition chimique , Catalyse
20.
Environ Res ; 237(Pt 2): 116959, 2023 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-37619628

RÉSUMÉ

Biochar is widely used to remove organic pollutants from the environment. Several studies have focused on pollutant removal via biochar adsorption. However, research on the subsequent processing of pollutant-adsorbed biochar is lacking. This study explored the potential of biochar for the adsorption of an aquatic organic pollutant (tetracycline) and its subsequent use as a solid biofuel. These results suggest that corn straw-derived biochar (torrefaction and pyrolysis) is suitable for two-stage utilization to achieve bioresource valorization for environmental sustainability. Tetracycline-adsorbed biochar, particularly biochar pyrolyzed at 600 °C, is suitable for use as a biofuel. The biochar produced via torrefaction (300 °C) and pyrolysis (600 °C) is the optimal choice, with surface area, contact angle, graphitization degree, calorific value, enhancement factor, and upgrading energy index values of 172.48 m2/g, 120.4°, 3.87, 26.983 MJ/kg, 1.58, and 33.72, respectively. This is supported by the results of expense calculation, comprehensive performance analysis, and life-cycle assessment. Overall, the biochar produced in this study is suitable for organic pollutant removal and as solid biofuel; thus, it can be used to realize waste utilization for environmental sustainability.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...