Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cell Mol Immunol ; 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38942796

RÉSUMÉ

Metabolic changes play a crucial role in determining the status and function of macrophages, but how lipid reprogramming in macrophages contributes to tumor progression is not yet fully understood. Here, we investigated the phenotype, contribution, and regulatory mechanisms of lipid droplet (LD)-laden macrophages (LLMs) in hepatocellular carcinoma (HCC). Enriched LLMs were found in tumor tissues and were associated with disease progression in HCC patients. The LLMs displayed immunosuppressive phenotypes (with extensive expression of TREM2, PD-L1, CD206, and CD163) and attenuated the antitumor activities of CD8+ T cells. Mechanistically, tumor-induced reshuffling of cellular lipids and TNFα-mediated uptake of tumoral fatty acids contribute to the generation of triglycerides and LDs in macrophages. LDs prolong LLM survival and promote CCL20 secretion, which further recruits CCR6+ Tregs to HCC tissue. Inhibiting LLM formation by targeting DGAT1 and DGAT2, which catalyze the synthesis of triglycerides, significantly reduced Treg recruitment, and delayed tumor growth in a mouse hepatic tumor model. Our results reveal the suppressive phenotypes and mechanisms of LLM enrichment in HCC and suggest the therapeutic potential of targeting LLMs for HCC patients.

2.
Cancer Lett ; 585: 216638, 2024 Mar 31.
Article de Anglais | MEDLINE | ID: mdl-38266805

RÉSUMÉ

Recent studies have suggested that therapeutic upregulation of CCAAT/enhancer binding protein α (C/EBPα) prevents hepatocellular carcinoma (HCC) progression. However, the mechanisms underlying this outcome are not fully understood. In this study, we investigated the expression and functional roles of C/EBPα in human HCC, with a focus on monocytes/macrophages (Mφs). Paraffin-embedded tissues were used to visualize C/EBPα expression and analyze the prognostic value of C/EBPα+ monocytes/Mφs in HCC patients. The underlying regulatory mechanisms were examined using human monocyte-derived Mφs. The results showed that the expression of C/EBPα on monocytes/Mφs was significantly decreased in intra-tumor tissues compared to the corresponding peri-tumor tissues. C/EBPα+ monocytes/Mφs displayed well-differentiation and antitumor capacities, and the accumulation of these cells in tissue was associated with antitumor immune responses and predicted longer overall survival (OS) of HCC patients. Mechanistic studies demonstrated that C/EBPα was required for Mφ maturation and HLA-DR, CD169 and CD86 expression, which initiates antitumor cytotoxic T-cell responses; however, these effects were inhibited by monocyte autocrine IL-6- and IL-1ß-induced suppression of mTOR1 signaling. Reprogramming Mφs via the upregulation of C/EBPα may provide a novel strategy for cancer immunotherapy in patients with HCC.


Sujet(s)
Carcinome hépatocellulaire , Tumeurs du foie , Humains , Carcinome hépatocellulaire/anatomopathologie , Tumeurs du foie/anatomopathologie , Protéine alpha liant les séquences stimulatrices de type CCAAT/métabolisme , Macrophages/métabolisme , Monocytes/métabolisme
3.
Int J Ophthalmol ; 16(6): 855-862, 2023.
Article de Anglais | MEDLINE | ID: mdl-37332540

RÉSUMÉ

AIM: To determine the effects of protocatechuic acid (PCA) on streptozocin-induced diabetic retinopathy (DR) in rats. METHODS: Wistar rats were given a 50 mg/kg intraperitoneal injection of streptozocin to induce diabetes. Animals were assigned randomly one of four groups (8 rats per group): control, diabetic, diabetic plus PCA (25 mg/kg·d), and diabetic plus PCA (50 mg/kg·d). After inducing diabetes, treatments were started one week later and continued for eight weeks. After the experiment, the rats were sacrificed, and their retinas were taken for biochemical and molecular analysis. RESULTS: PCA administration diminished the blood glucose and glycated haemoglobin levels relative to the diabetic group. In diabetic rats, PCA lowered elevated levels of advanced glycosylated end products (AGEs) and receptor for AGEs (RAGE). In the retina of diabetic rats, PCA effectively decreased inflammatory cytokine, nuclear factor-κB, tumour necrosis factor-α, interleukin-1ß, and vascular endothelial growth factor, and increased antioxidant markers glutathione, superoxide dismutase, and catalase. CONCLUSION: The protective benefits of PCA against DR may be attributable to its suppression of the AGEs and RAGE and its antioxidant and anti-inflammatory properties.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE