Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 9.650
Filtrer
1.
Methods Mol Biol ; 2854: 177-188, 2025.
Article de Anglais | MEDLINE | ID: mdl-39192129

RÉSUMÉ

Cryo-electron microscopy is a powerful methodology in structural biology and has been broadly used in high-resolution structure determination for challenging samples, which are not readily available for traditional techniques. In particular, the strength of super macro-complexes and the lack of a need for crystals for cryo-EM make this technique feasible for the structural study of complexes involved in antiviral innate immunity. This chapter presents detailed information and experimental procedures of Cryo-EM for determining the structures of the complexes using STING as an example. The procedures included a sample quality check, high-resolution data acquisition, and image processing for Cryo-EM 3D structure determination.


Sujet(s)
Cryomicroscopie électronique , Immunité innée , Cryomicroscopie électronique/méthodes , Humains , Protéines membranaires/immunologie , Traitement d'image par ordinateur/méthodes , Imagerie tridimensionnelle/méthodes
2.
J Environ Sci (China) ; 148: 221-229, 2025 Feb.
Article de Anglais | MEDLINE | ID: mdl-39095159

RÉSUMÉ

Polychlorinated naphthalenes (PCNs) are detrimental to human health and the environment. With the commercial production of PCNs banned, unintentional releases have emerged as a significant environmental source. However, relevant information is still scarce. In this study, provincial emissions for eight PCNs homologues from 37 sources in the Chinese mainland during the period of 1960-2019 were estimated based on a source-specific and time-varying emission factor database. The results showed that the total PCNs emissions in 2019 reached 757.0 kg with Hebei ranked at the top among all the provinces and iron & steel industry as the biggest source. Low-chlorinated PCNs comprised 90% of emissions by mass, while highly chlorinated PCNs dominated in terms of toxicity, highlighting divergent priorities for mitigating emissions and safeguarding human health. The emissions showed an overall upward trend from 1960 to 2019 driven by emission increase from iron & steel industry in terms of source, and from North China and East China in terms of geographic area. Per-capita emissions followed an inverted U-shaped environmental Kuznets curve while emission intensities decreased with increasing per-capita Gross Domestic Product (GDP) following a nearly linear pattern when log-transformed.


Sujet(s)
Polluants atmosphériques , Surveillance de l'environnement , Naphtalènes , Chine , Naphtalènes/analyse , Polluants atmosphériques/analyse , Pollution de l'air/statistiques et données numériques
3.
Gene ; 932: 148908, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39218414

RÉSUMÉ

BACKGROUND: Although progress has been made in accurate diagnosis and targeted treatments, breast cancer (BC) patients with metastasis still present a grim prognosis. With the continuous emergence and development of new personalized and precision medicine targeting specific tumor biomarkers, there is an urgent need to find new metastatic and prognostic biomarkers for BC patients. METHODS: We were dedicated to identifying genes linked to metastasis and prognosis in breast cancer through a combination of in silico analysis and experimental validation. RESULTS: A total of 25 overlap differentially expressed genes were identified. Ten hub genes (namely MRPL13, CTR9, TCEB1, RPLP0, TIMM8B, METTL1, GOLT1B, PLK2, PARL and MANBA) were identified and confirmed. MRPL13, TCEB1 and GOLT1B were shown to be associated with the worse overall survival (OS) and were optionally chosen for further verification by western blot. Only MRPL13 was found associated with cell invasion, and the expression of MRPL13 in metastatic BC was significantly higher than in primary BC. CONCLUSION: We proposed MRPL13 could be a potential novel biomarker for the metastasis and prognosis of breast cancer.

4.
Urol Int ; 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39222623

RÉSUMÉ

INTRODUCTION: Penile squamous cell carcinoma (PSCC) is a rare malignancy in men with poor survival in metastatic disease. Lynch syndrome (LS) is a cancer predisposition, autosomal-dominant, inherited disorder arises from loss of function variants in mismatch repair genes. CASE PRESENTATION: Here, we reported a PSCC patient who was suspected with LS caused by a heterozygous PMS2 D526Afs*69 variant. A 57-year-old male with PSCC underwent pelvic lymph node dissection and bilateral groin lymph node dissection due to metastatic disease. He has a family history of colon cancer and brain cancer. Comprehensive genomic sequencing of his tumor specimen identified 19 somatic mutations with a high tumor mutation burden (14.03 mutations per Mb) and a high frequency of microsatellite instability (MSI-H). Additionally, a germline PMS2 D526Afs*69 mutation was identified in the peripheral blood sample. Immunohistochemistry analysis showed complete loss of PMS2 and MLH1 expression in his tumor cells. CONCLUSION: These observations provided evidence suggesting that PSCC could be part of the LS spectrum.

5.
J Biol Chem ; : 107736, 2024 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-39222681

RÉSUMÉ

Pyrone-2,4-dicarboxylic acid (PDC) is a valuable polymer precursor that can be derived from the microbial degradation of lignin. The key enzyme in the microbial production of PDC is CHMS dehydrogenase, which acts on the substrate 4-carboxy-2-hydroxymuconate-6-semialdehyde (CHMS). We present the crystal structure of CHMS dehydrogenase (PmdC from Comamonas testosteroni) bound to the cofactor NADP, shedding light on its three-dimensional architecture, and revealing residues responsible for binding NADP. Using a combination of structural homology, molecular docking, and quantum chemistry calculations we have predicted the binding site of CHMS. Key histidine residues in a conserved sequence are identified as crucial for binding the hydroxyl group of CHMS and facilitating dehydrogenation with NADP. Mutating these histidine residues results in a loss of enzyme activity, leading to a proposed model for the enzyme's mechanism. These findings are expected to help guide efforts in protein and metabolic engineering to enhance PDC yields in biological routes to polymer feedstock synthesis.

6.
Article de Anglais | MEDLINE | ID: mdl-39223992

RÉSUMÉ

BACKGROUND: Rotational atherectomy (RA) remains an integral tool for the treatment of severe coronary calcified lesions despite emergence of newer techniques. We aimed to evaluate the contemporary clinical practices and outcomes of RA in China. METHODS: The Rota China Registry (NCT03806621) was an investigator-initiated, prospective, multicenter registry based on China Rota Elite Group. Consecutive patients treated with RA were recruited. A pre-designed, standardized protocol was recommended for the RA procedure. The primary safety endpoint was major adverse cardiovascular events (MACE: composite of cardiac death, myocardial infarction, or ischemia-driven target lesion revascularization) at 30 days. The primary efficacy endpoint was procedural success. RESULTS: Between July 2018 and December 2020, 980 patients were enrolled at 19 sites in China. Mean patient age was 68.4 years, and 61.4% were men. Radial access was used in 79.1% patients, and 32.7% procedures were guided by intravascular imaging. A total of 22.6% procedures used more than 1 burr, and the maximal burr size was ≥1.75 mm in 24.4% cases, with burr upsizing in 19.3% cases, achieving a final burr-to-artery ratio of 0.52. Procedural success was achieved in 91.1% of patients, and the rate of 30-day and 1-year MACE was 4.9% and 8.2%, respectively. Multivariable analysis identified the total lesion length (HR 1.014, 95% CI: 1.002-1.027; p = 0.021) as predictor of 30-day MACE, and renal insufficiency (HR 1.916, 95% CI: 1.073-3.420; p = 0.028) as predictor of 1-year MACE. CONCLUSIONS: In this contemporary prospective registry in China, the use of RA was effective in achieving high procedural success rate with good short- and long-term outcomes in patients with severely calcified lesions.

7.
Heliyon ; 10(16): e36079, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39224291

RÉSUMÉ

Neurodegenerative disorders are chronic conditions that progressively damage and destroy parts of the nervous system, and are currently considered permanent and incurable. Alternative strategies capable of effectively healing neuronal damage have been actively pursued. Here, we report the neuroprotective effects of baicalin (BA) combined with plasma-activated medium (PAM) against glutamate-induced excitotoxicity in SH-SY5Y cells. Through in vitro assays, the cell viability, inflammation, apoptosis, and oxidative stress were evaluated. The co-application of BA and PAM significantly enhanced cell viability, reduced pro-inflammatory markers (TNF-α and NF-κB), decreased apoptotic proteins (Bax and Caspase-3) and boosted antioxidative defenses (increased SOD activity and lowered ROS levels). This study confirms the potential of combining BA with PAM as an effective therapeutic strategy for mitigating the effects of excitotoxicity. PAM is a promising adjunct and potential drug delivery method in neuroprotective therapy, providing a new avenue for developing treatments for diseases characterized by neuronal damage.

8.
Nano Lett ; 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39225707

RÉSUMÉ

Quasi-two-dimensional (Q-2D) perovskites show great potential in the field of photonic and optoelectronic device applications. However, defects and local lattice dislocation still limit performance and stability improvement by nonradiative recombination, unpreferred phase distribution, and unbonded amines. Here, a low-temperature synergistic strategy for both reconstructing and solidifying the perovskite top and buried interface is developed. By post-treating the 1,4-phenylenedimethanammonium (PDMA) based (PDMA)MA4Pb5I16 films with cesium acetate (CsAc) before thermal annealing, a condensation reaction between R-COO- and -NH2 and ion exchange between Cs+ and MA+ occur. It converts the unbonded amines to amides and passivates uncoordinated Pb2+. Meanwhile, it adjusts film composition and improves the phase distribution without changing the out-of-plane grain orientation. Consequently, performance of 18.1% and much-enhanced stability (e.g., stability for photo-oxygen increased over 10 times, light-thermal for T90 over 4 times, and reverse bias over 3 times) of (PDMA)MA4Pb5I16 perovskite solar cells are demonstrated.

9.
Environ Res ; : 119864, 2024 Aug 29.
Article de Anglais | MEDLINE | ID: mdl-39216734

RÉSUMÉ

Biofouling in membrane distillation (MD) has several repercussions, including reduced efficiency of the MD process and limiting membrane life. Additionally, the evaluation of MD biofouling using treated effluents from wastewater treatment plants remains an unexplored area. Thus, biofouling formation and development in a long term MD process (15 days) using treated effluent from a wastewater treatment plant was explored in this study. The results revealed that flux decline occurred in four phases: i) initial decline (0-1 d), ii) gradual decline (1-5 d), iii) progressive decline (5-10 d), and iv) rapid decline (10-15 d). Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis demonstrated that the treated effluent contained humic-like substances, which deposited on the membrane surface in phase 1. Whereas biopolymers development on the membrane surface in phase 2 and 3 was linked to biofouling. Microbial community analysis revealed that the initial colonisers were predominantly thermophilic bacteria, which were different from the microbial community of the treated effluent. The biofilm-forming bacteria included Schlegelella, Meiothermus, and Vulcaniibacterium. These microorganisms proliferate and release excessive extracellular polymeric substances (EPS), leading to the development of mature biofilm on membrane surface. This helped in the deposition of organics and inorganics from the bulk feed, which led to microbial community succession in phase 4 with the emergence of the Kallotenue genus. The results suggested that organic substances and microbial communities on membrane surface at different stages in a long-term MD process had a significant influence on MD performance for high-quality wastewater reuse.

10.
Biomolecules ; 14(8)2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39199289

RÉSUMÉ

Mastitis typically arises from bacterial invasion, where host cell apoptosis significantly contributes to the inflammatory response. Gram-positive bacteria predominantly utilize the virulence factor lipoteichoic acid (LTA), which frequently leads to chronic breast infections, thereby impacting dairy production and animal husbandry adversely. This study employed LTA to develop models of mastitis in cow mammary gland cells and mice. Transcriptomic analysis identified 120 mRNAs associated with endocytosis and apoptosis pathways that were enriched in the LTA-induced inflammation of the Mammary Alveolar Cells-large T antigen (MAC-T), with numerous differential proteins also concentrated in the endocytosis pathway. Notably, actin-related protein 2/3 complex subunit 3 (ARPC3), actin-related protein 2/3 complex subunit 4 (ARPC4), and the heat shock protein 70 (HSP70) are closely related. STRING analysis revealed interactions among ARPC3, ARPC4, and HSP70 with components of the apoptosis pathway. Histological and molecular biological assessments confirmed that ARPC3, ARPC4, and HSP70 were mainly localized to the cell membrane of mammary epithelial cells. ARPC3 and ARPC4 are implicated in the mechanisms of bacterial invasion and the initiation of inflammation. Compared to the control group, the expression levels of these proteins were markedly increased, alongside the significant upregulation of apoptosis-related factors. While HSP70 appears to inhibit apoptosis and alleviate inflammation, its upregulation presents novel research opportunities. In conclusion, we deduced the development mechanism of ARPC3, ARPC4, and HSP70 in breast inflammation, laying the foundation for further exploring the interaction mechanism between the actin-related protein 2/3 (ARP2/3) complex and HSP70.


Sujet(s)
Complexe Arp-2-3 , Apoptose , Protéines du choc thermique HSP70 , Lipopolysaccharides , Acides teichoïques , Acides teichoïques/pharmacologie , Protéines du choc thermique HSP70/métabolisme , Protéines du choc thermique HSP70/génétique , Animaux , Lipopolysaccharides/pharmacologie , Femelle , Apoptose/effets des médicaments et des substances chimiques , Souris , Complexe Arp-2-3/métabolisme , Complexe Arp-2-3/génétique , Bovins , Mastite/métabolisme , Mastite/microbiologie , Mastite/anatomopathologie , Inflammation/métabolisme , Inflammation/anatomopathologie , Modèles animaux de maladie humaine , Glandes mammaires animales/métabolisme , Glandes mammaires animales/anatomopathologie
11.
Chem Biol Interact ; 401: 111188, 2024 Sep 25.
Article de Anglais | MEDLINE | ID: mdl-39121897

RÉSUMÉ

The random flap is one of the commonly used techniques for tissue defect repair in surgery and orthopaedics, however the risk of ischaemic necrosis at the distal end of the flap limits its size and clinical application. Metformin (Met) is a first-line medication in the treatment of type 2 diabetes, with additional effects such as anti-tumor, anti-aging, and neuroprotective properties. In this study, we aimed to investigate the biological effects and potential mechanisms of Met in improving the survival of random skin flaps. Twenty-four male Sprague-Dawley rats and 12 male C57BL/6J mice underwent McFarlane flap surgery and divided into control (Ctrl) and Met groups (100 mg/kg). The survival rate of the flap were evaluated on day 7. Angiography, Laser doppler blood flow imaging, and H&E staining were used to assess blood flow supply and the levels of microvascular density. Then, reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured by test kits. Immunohistochemistry analysis was conducted to evaluate the expression of Vascular Endothelial Growth Factor A (VEGFA), Vascular endothelial cadherin (VE-cadherin) and CD31. Rats and mice in the Met group exhibited higher flap survival rate, microcirculatory flow, and higher expression levels of VEGFA and VE-cadherin compared with the Ctrl group. In addition, the level of oxidative stress was significantly lower in the met group. And then we demonstrated that the human umbilical vein endothelial cells (HUVECs) treated with Met can alleviate tert-butyl hydroperoxide (TBHP)-stimulated cellular dysfunction and oxidative stress injury. Mechanistically, Met markedly stimulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and promoted Nrf2 nuclear translocation. Silencing of Nrf2 partially abolished the antioxidant and therapeutic effects of Met. In summary, our data have confirmed that Met has a positive effect on flap survival and reduces necrosis. The mechanism of action involves the regulation of the Nrf2/HO-1 signaling pathway to combat oxidative stress and reduce damage.


Sujet(s)
Metformine , Souris de lignée C57BL , Facteur-2 apparenté à NF-E2 , Rat Sprague-Dawley , Transduction du signal , Animaux , Facteur-2 apparenté à NF-E2/métabolisme , Metformine/pharmacologie , Mâle , Transduction du signal/effets des médicaments et des substances chimiques , Rats , Souris , Humains , Lambeaux chirurgicaux/anatomopathologie , Peau/effets des médicaments et des substances chimiques , Peau/métabolisme , Facteur de croissance endothéliale vasculaire de type A/métabolisme , Espèces réactives de l'oxygène/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Heme oxygenase-1/métabolisme , Malonaldéhyde/métabolisme , Cellules endothéliales de la veine ombilicale humaine/métabolisme , Cellules endothéliales de la veine ombilicale humaine/effets des médicaments et des substances chimiques , Superoxide dismutase/métabolisme
12.
Bioresour Technol ; 410: 131214, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39127361

RÉSUMÉ

Despite its prominence, the ability to engineer Cupriavidus necator H16 for inorganic carbon uptake and fixation is underexplored. We tested the roles of endogenous and heterologous genes on C. necator inorganic carbon metabolism. Deletion of ß-carbonic anhydrase can had the most deleterious effect on C. necator autotrophic growth. Replacement of this native uptake system with several classes of dissolved inorganic carbon (DIC) transporters from Cyanobacteria and chemolithoautotrophic bacteria recovered autotrophic growth and supported higher cell densities compared to wild-type (WT) C. necator in batch culture. Strains expressing Halothiobacillus neopolitanus DAB2 (hnDAB2) and diverse rubisco homologs grew in CO2 similarly to the wild-type strain. Our experiments suggest that the primary role of carbonic anhydrase during autotrophic growth is to support anaplerotic metabolism, and an array of DIC transporters can complement this function. This work demonstrates flexibility in HCO3- uptake and CO2 fixation in C. necator, providing new pathways for CO2-based biomanufacturing.

13.
Sci Total Environ ; 951: 175449, 2024 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-39134278

RÉSUMÉ

Enhanced anthropogenic activity strength has altered the watershed particulate transport and material cycle resulting in organic pollutant deposition changes in Dongting Lake associated with unclear ecological risk. In the present study, dual biomarkers i.e. n-alkanes and polycyclic aromatic hydrocarbon (PAHs) were applied in the 210Pb-dated sediment cores for traceability of centennial organic pollutants in the lake mouth area. The partial least squares path model and risk quotients method were used to explore the controlling pathways and ecological risk. The results show a range of sedimentary organic carbon (C), nitrogen (N), and phosphorus (P) was at 1.76-185.66, 0.97-89.80, and 0.01-0.97 g m-2 yr-1 with total reserves of 51.68, 18.44, and 0.27 t ha-1, respectively, over the past 179 years. The presence of PAHs rapidly increased by 2.47 fold from 535.60 ng g-1, while PAHs and carcinogenic PAHs (ΣCPAHs) burial fluxes increased by about 6 and 5 folds, respectively. Accompanied by anthropogenic activities and climate change, the exotic sources gradually becoming predominant. The n-alkane diagnostic ratios indicated a shift of organic matter (OM) from autotrophic bacteria, algae, and phytoplankton-derived sources to macrophyte and terrestrial plants. The exotic origins rose to approximately 73.61 %, while endogenous sources decreased to 26.39 %. The direct effects of anthropogenic activities and their indirect negative impacts on climate and sedimentary structure are the key ways for sediment material loading. The nutrient accumulation in sediments coincides with the lake's eutrophication history over the past decades. The ΣCPAHs accounted for about 89.37 ± 17.14 % of the total TEQ, reflecting a strong ecological risk. The contribution of anthropogenic activities such as fuel usage, fertilizer application, hard pavement coverage, and OM loss from the ecosystem to the sources of organic pollutants and their component types may be a focus of attention in the middle reaches of the Yangtze River plain lake.

14.
Nat Commun ; 15(1): 7071, 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39152117

RÉSUMÉ

Acquiring multi-dimensional optical information, such as intensity, spectrum, polarization, and phase, can significantly enhance the performance of photodetectors. Incorporating these dimensions allows for improved image contrast, enhanced recognition capabilities, reduced interference, and better adaptation to complex environments. However, the challenge lies in obtaining these dimensions on a single photodetector. Here we propose a misaligned unipolar barrier photodetector based on van der Waals heterojunction to address this issue. This structure enables spectral detection by switching between two absorbing layers with different cut-off wavelengths for dual-band detection. For polarization detection, anisotropic semiconductors like black phosphorus and black arsenic phosphorus inherently possess polarization-detection capabilities without additional complex elements. By manipulating the crystal direction of these materials during heterojunction fabrication, the device becomes sensitive to incident light at different polarization angles. This research showcases the potential of the misaligned unipolar barrier photodetector in capturing multi-dimensional optical information, paving the way for next-generation photodetectors.

15.
Stem Cells Dev ; 2024 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-39155804

RÉSUMÉ

Heart failure is still the main cause of mortality worldwide. This study investigated the characteristics of human pericardial fluid-derived cells (hPFCs) and their effects in treating doxorubicin (DOX)-induced heart failure (HF) rats through intrapericardial injection. hPFCs were isolated from patients who underwent heart transplantation (N=5). These cells that primarily expressed SCA-1, NANOG, mesenchymal markers CD90, CD105 and CD73, were able to form adipocytes, osteoblasts, and cardiomyocytes in vitro. Passage 3 hPFCs (2.5 ×105 cells/heart) were injected into the pericardial cavity of the doxorubicin (DOX)-injured rat hearts, significantly improving cardiac functions after 4 weeks. The tracked and engrafted RFP-tagged hPFCs co-expressed cardiac troponin T and connexin 43 after 4 weeks in the host myocardium. This observation was also coupled with a significant reduction in cardiac fibrosis following hPFCs treatment (P<0.0001 versus untreated). The elevated inflammatory cytokine IL-6, IL-10, and TNF-α in the DOX-treated hearts were found to have significantly reduced (P<0.001 versus untreated), while the regional pro-angiogenic vascular endothelial growth factor A (VEGFA) level was increased in the hPFCs-treated group after 4 weeks (P<0.05 versus untreated). hPFCs possess stem cell characteristics and can improve cardiac functions of DOX-induced heart failure rats after 4 weeks through pericardial administration. The improvements were attributed to a significant reduction in cardiac fibrosis, inflammation, and elevated regional pro-angiogenesis factor VEGFA, with evidence of cellular engraftment and differentiation in the host myocardium.

16.
Front Med (Lausanne) ; 11: 1412048, 2024.
Article de Anglais | MEDLINE | ID: mdl-39135720

RÉSUMÉ

Objective: To investigate the difference in the effectiveness and refraction of the foldable capsular buckle (FCB) in rhegmatogenous retinal detachment (RRD). Methods: Six patients with simple RRD were treated for FCB scleral buckling at Xiamen Eye Center of Xiamen University from October 2023 to February 2024. The parameters assessed included demographic data, clinical data such as preoperative ocular axis, corneal endothelial count, macular foveal thickness, operative time, preoperative and final follow-up intro ocular pressure (IOP), retinal attachment status, and postoperative complications. Refractive change before and after surgery, including sphere, cylinder degree, spherical equivalent, and absolute spherical equivalent difference were compared. Results: All six patients with sound retinal reattachment after FCB scleral buckling, including two men and four women, mean age 41.33 ± 12.40 years old, duration before surgery onset to 7.17 ± 7.16 days, FCB mean operation time 36.67 ± 13.07 min, Preoperative IOP mean 13.35 ± 2.64 mmHg and mean 21.12 ± 8.09 mmHg of final follow-up IOP; there was no significant difference between preoperative IOP and follow-up IOP (p = 0.050). The preoperative sphere range was -6.25 to +2.50 D, and the cylinder range was -2.50 to +1.00 D; the absolute spherical equivalent difference before and after was 1.60 ± 1.69 degrees. Conclusion: FCB can achieve retinal reattachment and restore visual function in cases of RRD. The shorter duration of external scleral buckle compression with FCB suggests that FCB scleral buckling holds greater promise in the clinical treatment of RRD caused by retinal tears.

17.
J Inflamm Res ; 17: 5253-5269, 2024.
Article de Anglais | MEDLINE | ID: mdl-39135978

RÉSUMÉ

Purpose: This study investigated the correlation between the Naples prognostic score (NPS), clinicopathological traits, and the postoperative prognoses of patients with triple-negative breast cancer (TNBC). Based on NPS, a predictive nomogram was developed to estimate the long-term survival probabilities of patients with TNBC post-surgery. Patients and Methods: We retrospectively examined the clinical records of 223 women with TNBC treated at Ningbo Medical Center, Lihuili Hospital between January 1, 2016 and December 31, 2020. Blood tests and biochemical analyses were conducted before surgery. The prognostic nutritional index (PNI), controlling nutritional status (CONUT), neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and NPS were determined based on blood-related markers. A Kaplan-Meier survival analysis assessed the association between NPS, PNI, CONUT score, overall survival (OS), and breast cancer-specific survival (BCSS). Predictive accuracy was evaluated using the area under the receiver operating characteristic curve (AUC) and C index. The patients were randomly divided into the training and the validation group (6:4 ratio). A nomogram prediction model was developed and evaluated using the R Software for Statistical Computing (RMS) package. Results: NPS outperformed other scores in predicting inflammation outcomes. Patients with an elevated NPS had a poorer prognosis (P<0.001). Lymph node ratio (LNR), surgical method, postoperative chemotherapy, and NPS independently predicted OS, whereas M stage, LNR, and NPS independently predicted BCSS outcome. The OS and BCSS predicted by the nomogram model aligned well with the actual OS and BCSS. The decision curve analysis showed significant clinical utility for the nomogram model. Conclusion: In this study, NPS was an important prognostic indicator for patients with TNBC. The nomogram prognostic model based on NPS outperformed other prognostic scores for predicting patient prognosis. The model demonstrated a clear stratification ability for patient prognosis, which emphasized the potential benefits of early intervention for high-risk patients.


In this study, we aimed to understand how the Naples prognostic score (NPS) scoring system could predict the prognosis for patients with triple-negative breast cancer (TNBC). TNBC is a type of breast cancer that can be difficult to treat. Medical records of 223 women with TNBC were retrospectively analyzed. These women had their blood tested before surgery to check for certain markers related to nutrition and inflammation. NPS was used along with other scores to determine their accuracy in predicting survival. NPS was better at predicting outcomes than the other scores. The patients with higher NPS scores tended to have poorer outcomes. We also created a visual tool called a nomogram to help doctors predict patient outcomes based on the NPS scores. NPS can be a valuable tool for doctors treating patients with TNBC because it can help them predict how well a patient might do after surgery. This information could be used to tailor treatment plans for these patients. The nomogram provides a user-friendly way for doctors to use NPS in their practice. Overall, this study showed that NPS is a powerful tool for predicting outcomes for patients with TNBC, which could lead to better treatment decisions and improved outcomes for these patients.

18.
J Diabetes ; 16(8): e13589, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39136595

RÉSUMÉ

BACKGROUND: The triglyceride-glucose (TyG) index and high-sensitivity C-reactive protein (hsCRP) are the commonly used biomarkers for insulin resistance and systemic inflammation, respectively. We aimed to investigate the combined association of TyG and hsCRP with the major adverse cardiovascular events (MACE) in patients with chronic coronary syndrome (CCS). METHODS: A total of 9421 patients with CCS were included in this study. The primary endpoint was defined as a composite of MACE covering all-cause death, nonfatal myocardial infarction, and revascularization. RESULTS: During the 2-year follow-up period, 660 (7.0%) cases of MACE were recorded. Participants were divided equally into three groups according to TyG levels. Compared with the TyG T1 group, the risk of MACE was significantly higher in the TyG T3 group. It is noteworthy that among patients in the highest tertile of TyG, hsCRP >3 mg/L was significantly associated with an increased risk of MACE, whereas the results were not significant in the medium to low TyG groups. When patients were divided into six groups according to hsCRP and TyG, the Cox regression analysis showed that patients in the TyG T3 and hsCRP >3 mg/L group had a significantly higher risk of MACE than those in the TyG T1 and hsCRP ≤3 mg/L group. However, no significant interaction was found between TyG and hsCRP on the risk of MACE. CONCLUSION: Our study suggests that the concurrent assessment of TyG and hsCRP may be valuable in identifying high-risk populations and guiding management strategies among CCS patients.


Sujet(s)
Marqueurs biologiques , Glycémie , Protéine C-réactive , Triglycéride , Humains , Protéine C-réactive/analyse , Protéine C-réactive/métabolisme , Mâle , Femelle , Adulte d'âge moyen , Triglycéride/sang , Glycémie/analyse , Glycémie/métabolisme , Marqueurs biologiques/sang , Sujet âgé , Maladies cardiovasculaires/sang , Maladies cardiovasculaires/étiologie , Maladies cardiovasculaires/épidémiologie , Études de cohortes , Pronostic , Facteurs de risque , Études de suivi , Maladie chronique
19.
Int J Nanomedicine ; 19: 8139-8157, 2024.
Article de Anglais | MEDLINE | ID: mdl-39139506

RÉSUMÉ

Extracellular vesicles (EVs) are nanoscale lipid bilayer vesicles released during cell activation, cellular damage, or apoptosis. They carry nucleic acids, proteins, and lipids facilitating intercellular communication and activate signaling pathways in target cells. In non-small cell lung cancer (NSCLC), EVs may contribute to tumor growth and metastasis by modulating immune responses, facilitating epithelial-mesenchymal transition, and promoting angiogenesis, while potentially contributing to resistance to chemotherapy drugs. EVs in liquid biopsies serve as non-invasive biomarkers for early cancer detection and diagnosis. Due to their small size, inherent molecular transport properties, and excellent biocompatibility, EVs also act as natural drug delivery vehicles in NSCLC therapy.


Sujet(s)
Carcinome pulmonaire non à petites cellules , Vésicules extracellulaires , Tumeurs du poumon , Humains , Carcinome pulmonaire non à petites cellules/métabolisme , Carcinome pulmonaire non à petites cellules/anatomopathologie , Tumeurs du poumon/métabolisme , Tumeurs du poumon/anatomopathologie , Transition épithélio-mésenchymateuse , Systèmes de délivrance de médicaments/méthodes , Marqueurs biologiques tumoraux/métabolisme , Marqueurs biologiques tumoraux/analyse , Animaux , Antinéoplasiques/pharmacologie
20.
Dent Mater J ; 2024 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-39135261

RÉSUMÉ

Material surface micromorphology can modulate cellular behavior and promote osteogenic differentiation through cytoskeletal rearrangement. Bone reconstruction requires precise regulation of gene expression in cells, a process governed by epigenetic mechanisms such as histone modifications, DNA methylation, and chromatin remodeling. We constructed osteon-mimetic concentric microgrooved titanium surfaces with different groove sizes and cultured bone marrow-derived mesenchymal stem cells (BMSCs) on the material surfaces to study how they regulate cell biological behavior and osteogenic differentiation through epigenetics. We found that the cells arranged in concentric circles along the concentric structure in the experimental group, and the concentric microgrooved surface did not inhibit cell proliferation. The results of a series of osteogenic differentiation experiments showed that the concentric microgrooves facilitated calcium deposition and promoted osteogenic differentiation of the BMSCs. Concentric microgrooved titanium surfaces that were 30 µm wide and 10 µm deep promoted osteogenic differentiation of BMSC by increasing WDR5 expression via H3K4 trimethylation upregulation.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE