Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 93
Filtrer
1.
Opt Lett ; 49(15): 4270-4273, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39090911

RÉSUMÉ

We report on a high average power and high repetition rate nanosecond pulsed eye-safe KGW Raman laser intracavity driven by an acousto-optic Q-switched 1342 nm two-crystal Nd:YVO4 laser. Taking advantages of the carefully selected two-composite-laser-crystal configuration, the thoroughly optimized gate-open time of acousto-optic modulator and the ingeniously designed U-shaped resonator, substantial power and efficiency enhancements as well as superior mode matching have been enabled. Under the injected pump power of 64.5 W, the average output powers of the first-Stokes fields at 1496 and 1527 nm can be up to 8.1 and 9.5 W with 25 kHz repetition rate and 3.2 µs gate-open time, respectively, corresponding to the optical power conversion efficiencies of 12.6% and 14.7%. Meantime, the resultant pulse widths are determined to be 4.6 and 6.3 ns with the peak powers of approximately 70 and 60 kW, respectively. The beam quality can be maintained with M2 < 1.5 across the entire output power range.

2.
Nat Commun ; 15(1): 6178, 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-39039077

RÉSUMÉ

Stable vortex lattices are basic dynamical patterns which have been demonstrated in physical systems including superconductor physics, Bose-Einstein condensates, hydrodynamics and optics. Vortex-antivortex (VAV) ensembles can be produced, self-organizing into the respective polar lattices. However, these structures are in general highly unstable due to the strong VAV attraction. Here, we demonstrate that multiple optical VAV clusters nested in the propagating coherent field can crystallize into patterns which preserve their lattice structures over distance up to several Rayleigh lengths. To explain this phenomenon, we present a model for effective interactions between the vortices and antivortices at different lattice sites. The observed VAV crystallization is a consequence of the globally balanced VAV couplings. As the crystallization does not require the presence of nonlinearities and appears in free space, it may find applications to high-capacity optical communications and multiparticle manipulations. Our findings suggest possibilities for constructing VAV complexes through the orbit-orbit couplings, which differs from the extensively studied spin-orbit couplings.

3.
Opt Express ; 32(12): 20852-20861, 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38859455

RÉSUMÉ

We report on a high-power and narrow-linewidth nanosecond pulsed intracavity crystalline Raman laser at 1.7 µm. Driven by an acousto-optically Q-switched 1314 nm two-crystal Nd:YLF laser, the highly efficient cascaded YVO4 Raman laser at 1715nm was obtained within the well-designed L-shaped resonator. Thanks to the absence of spatial hole burning in the stimulated Raman scattering process, significant spectral purification of second-Stokes radiation was observed by incorporating a fused silica etalon in the high-Q fundamental cavity. Under the repetition rate of 4 kHz, the highest average output power for single longitudinal mode operation was up to 2.2 W with the aid of precision vibration isolation and precision temperature controlling, corresponding to the pulse duration of ∼2.8 ns and the spectral linewidth of ∼330 MHz. Further increasing the launched pump power, the second-Stokes laser tended toward be always multimode, and the maximum average output power amounted to 4.8 W with the peak power of ∼0.8 MW and the spectral linewidth of ∼0.08 nm. The second-Stokes emission was near diffraction limited with M2 < 1.4 across the whole pump power range.

4.
World J Gastroenterol ; 30(10): 1377-1392, 2024 Mar 14.
Article de Anglais | MEDLINE | ID: mdl-38596500

RÉSUMÉ

BACKGROUND: Crohn's disease (CD) is often misdiagnosed as intestinal tuberculosis (ITB). However, the treatment and prognosis of these two diseases are dramatically different. Therefore, it is important to develop a method to identify CD and ITB with high accuracy, specificity, and speed. AIM: To develop a method to identify CD and ITB with high accuracy, specificity, and speed. METHODS: A total of 72 paraffin wax-embedded tissue sections were pathologically and clinically diagnosed as CD or ITB. Paraffin wax-embedded tissue sections were attached to a metal coating and measured using attenuated total reflectance fourier transform infrared spectroscopy at mid-infrared wavelengths combined with XGBoost for differential diagnosis. RESULTS: The results showed that the paraffin wax-embedded specimens of CD and ITB were significantly different in their spectral signals at 1074 cm-1 and 1234 cm-1 bands, and the differential diagnosis model based on spectral characteristics combined with machine learning showed accuracy, specificity, and sensitivity of 91.84%, 92.59%, and 90.90%, respectively, for the differential diagnosis of CD and ITB. CONCLUSION: Information on the mid-infrared region can reveal the different histological components of CD and ITB at the molecular level, and spectral analysis combined with machine learning to establish a diagnostic model is expected to become a new method for the differential diagnosis of CD and ITB.


Sujet(s)
Maladie de Crohn , Entérite , Tuberculose gastro-intestinale , Humains , Maladie de Crohn/diagnostic , Maladie de Crohn/anatomopathologie , Spectroscopie infrarouge à transformée de Fourier , Diagnostic différentiel , Paraffine , Tuberculose gastro-intestinale/diagnostic , Tuberculose gastro-intestinale/anatomopathologie , Entérite/diagnostic , Apprentissage machine , Protéines mutées dans l'ataxie-télangiectasie
5.
Drug Dev Res ; 85(2): e22170, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38481011

RÉSUMÉ

A four-step synthetic process has been developed to prepare 1,3,5,8-tetrahydroxyxanthone (2a) and its isomer 1,3,7,8-tetrahydroxyxanthone (2b). 25 more xanthones were also synthesized by a modified scheme. Xanthone 2a was identified as the most active inhibitor against both α-glucosidase and aldose reductase (ALR2), with IC50 values of 7.8 ± 0.5 µM and 63.2 ± 0.6 nM, respectively, which was far active than acarbose (35.0 ± 0.1 µM), and a little more active than epalrestat (67.0 ± 3.0 nM). 2a was also confirmed as the most active antioxidant in vitro with EC50 value of 8.9 ± 0.1 µM. Any structural modification including methylation, deletion, and position change of hydroxyl group in 2a will cause an activity loss in inhibitory and antioxidation. By applying a H2 O2 -induced oxidative stress nematode model, it was confirmed that xanthone 2a can be absorbed by Caenorhabditis elegans and is bioavailable to attenuate in vivo oxidative stress, including the effects on lifespan, superoxide dismutase, Catalase, and malondialdehyde. 2a was verified with in vivo hypoglycemic effect and mitigation of embryo malformations in high glucose. All our data support that xanthone 2a behaves triple roles and is a potential agent to treat diabetic mellitus, gestational diabetes mellitus, and diabetic complications.


Sujet(s)
Complications du diabète , Diabète , Xanthones , Humains , Relation structure-activité , Hypoglycémiants/pharmacologie , Hypoglycémiants/usage thérapeutique , Hypoglycémiants/composition chimique , alpha-Glucosidase/composition chimique , alpha-Glucosidase/métabolisme , Complications du diabète/traitement médicamenteux , Antioxydants/pharmacologie , Antioxydants/usage thérapeutique , Xanthones/pharmacologie , Xanthones/usage thérapeutique , Simulation de docking moléculaire , Diabète/traitement médicamenteux
6.
Sensors (Basel) ; 24(4)2024 Feb 09.
Article de Anglais | MEDLINE | ID: mdl-38400292

RÉSUMÉ

In recent years, advancements in deep Convolutional Neural Networks (CNNs) have brought about a paradigm shift in the realm of image super-resolution (SR). While augmenting the depth and breadth of CNNs can indeed enhance network performance, it often comes at the expense of heightened computational demands and greater memory usage, which can restrict practical deployment. To mitigate this challenge, we have incorporated a technique called factorized convolution and introduced the efficient Cross-Scale Interaction Block (CSIB). CSIB employs a dual-branch structure, with one branch extracting local features and the other capturing global features. Interaction operations take place in the middle of this dual-branch structure, facilitating the integration of cross-scale contextual information. To further refine the aggregated contextual information, we designed an Efficient Large Kernel Attention (ELKA) using large convolutional kernels and a gating mechanism. By stacking CSIBs, we have created a lightweight cross-scale interaction network for image super-resolution named "CSINet". This innovative approach significantly reduces computational costs while maintaining performance, providing an efficient solution for practical applications. The experimental results convincingly demonstrate that our CSINet surpasses the majority of the state-of-the-art lightweight super-resolution techniques used on widely recognized benchmark datasets. Moreover, our smaller model, CSINet-S, shows an excellent performance record on lightweight super-resolution benchmarks with extremely low parameters and Multi-Adds (e.g., 33.82 dB@Set14 × 2 with only 248 K parameters).

7.
BMJ Open ; 14(2): e078694, 2024 Feb 24.
Article de Anglais | MEDLINE | ID: mdl-38401895

RÉSUMÉ

OBJECTIVES: To evaluate the diagnostic performance of urine HIV antibody rapid test kits in screening diverse populations and to analyse subjects' willingness regarding reagent types, purchase channels, acceptable prices, and self-testing. DESIGNS: Diagnostic accuracy studies PARTICIPANTS: A total of 2606 valid and eligible samples were collected in the study, including 202 samples from female sex workers (FSWs), 304 persons with injection drug use (IDU), 1000 pregnant women (PW), 100 subjects undergoing voluntary HIV counselling and testing (VCT) and 1000 students in higher education schools or colleges (STUs). Subjects should simultaneously meet the following inclusion criteria: (1) being at least 18 years old and in full civil capacity, (2) signing an informed consent form and (3) providing truthful identifying information to ensure that the subjects and their samples are unique. RESULTS: The sensitivity, specificity and area under the curve (AUC) of the urine HIV-1 antibody rapid test kits were 92.16%, 99.92% and 0.960 (95% CI: 0.952 to 0.968, p<0.001), respectively, among 2606 samples collected during on-site screenings. The kits showed good diagnostic performance in persons with IDU (AUC, 1.000; 95% CI, 1.000 to 1.000, p<0.001), PW (AUC, 0.999; 95% CI, 0.999 to 1.000, p<0.001) and FSWs (AUC, 1.000; 95% CI, 1.000 to 1.000, p<0.001). The AUC of the urine reagent kits in subjects undergoing VCT was 0.941 (95% CI: 0.876 to 0.978, p<0.001). The 'acceptable price' had the greatest influence on STUs (Pi=1.000) and PW (Pi=1.000), the 'purchase channel' had the greatest influence on subjects undergoing VCT (Pi=1.000) and persons with IDU (Pi=1.000) and the 'reagent types' had the greatest influence on FSWs (Pi=1.000). CONCLUSIONS: The rapid urine test kits showed good diagnostic validity in practical applications, despite a few cases involving misdiagnosis and underdiagnosis.


Sujet(s)
Infections à VIH , VIH-1 (Virus de l'Immunodéficience Humaine de type 1) , Travailleurs du sexe , Grossesse , Femelle , Humains , Adolescent , Infections à VIH/diagnostic , Infections à VIH/prévention et contrôle , Anticorps anti-VIH , Trousses de réactifs pour diagnostic
8.
Opt Lett ; 49(4): 1009-1012, 2024 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-38359229

RÉSUMÉ

A highly powerful nanosecond pulsed deep-red laser was demonstrated by intracavity second-harmonic generation of an actively Q-switched Nd:YLF dual-crystal-based KGW Raman laser in a critically phase-matched lithium triborate (LBO) crystal. The first-Stokes fields at 1461 and 1490 nm driven by the 1314 nm fundamental laser were firstly produced by accessing the Raman shifts of 768 and 901 cm-1 in the KGW crystal, respectively, and thereafter converted to the deep-red emission lines at 731 and 745 nm by finely tuning the phase-matching angle of the LBO crystal and carefully realigning the resonator. Integrating the benefits of the Nd:YLF dual-crystal configuration and the meticulously designed L-shaped resonator, this deep-red laser system delivered the maximum average output powers of 5.2 and 7.6 W with the optical power conversion efficiencies approaching 6.3% and 9.2% under the optimal pulse repetition frequency of 4 kHz, respectively. The pulse durations of 6.7 and 5.5 ns were acquired with the peak powers up to approximately 190 and 350 kW, respectively, and the resultant beam qualities were determined to be near-diffraction-limited with M2 ≈ 1.5.

9.
Opt Express ; 32(3): 3221-3233, 2024 Jan 29.
Article de Anglais | MEDLINE | ID: mdl-38297548

RÉSUMÉ

We present the growth, spectroscopy, continuous-wave (CW) and passively mode-locked (ML) operation of a novel "mixed" tetragonal calcium rare-earth aluminate crystal, Yb3+:Ca(Gd,Y)AlO4. The absorption, stimulated-emission, and gain cross-sections are derived for π and σ polarizations. The laser performance of a c-cut Yb:Ca(Gd,Y)AlO4 crystal is studied using a spatially single-mode, 976-nm fiber-coupled laser diode as a pump source. A maximum output power of 347 mW is obtained in the CW regime with a slope efficiency of 48.9%. The emission wavelength is continuously tunable across 90 nm (1010 - 1100 nm) using a quartz-based Lyot filter. With a commercial SEmiconductor Saturable Absorber Mirror to initiate and maintain ML operation, soliton pulses as short as 35 fs are generated at 1059.8 nm with an average output power of 51 mW at ∼65.95 MHz. The average output power can be scaled to 105 mW for slightly longer pulses of 42 fs at 1063.5 nm.

10.
Opt Express ; 32(3): 4180-4188, 2024 Jan 29.
Article de Anglais | MEDLINE | ID: mdl-38297624

RÉSUMÉ

We demonstrate the first ten-watt-level eye-safe intracavity crystalline Raman laser, to the best of our knowledge. The efficient high-power eye-safe Raman laser is intracavity-pumped by an acousto-optically Q-switched 1314 nm two-crystal Nd:YLF laser. Benefiting from the unique bi-axial properties of KGW crystal, two sets of eye-safe dual-wavelength Raman lasers operating at 1461, 1645 nm and 1490, 1721nm are achieved by rotating the Raman crystal. Under the launched pump power of 84.9 W and the repetition rate of 4 kHz, the maximum first-Stokes output powers of 7.9 W at 1461 nm and 8.2 W at 1490 nm are acquired with the second-Stokes output powers of 1.4 W at 1645 nm and 1.5 W at 1721nm, respectively, leading to the eye-safe dual-wavelength Raman output powers of up to 9.3 and 9.7 W. Meanwhile, the pulse durations at the wavelengths of 1461, 1490, 1645, 1721nm are determined to be 4.8, 5.5, 4.3, and 3.6 ns, respectively, which give rise to the peak powers approaching about 410, 370, 80, 100 kW. These Stokes emissions are found to be near diffraction limited with M2 < 1.6 across the entire output power range.

11.
Opt Lett ; 49(3): 646-649, 2024 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-38300080

RÉSUMÉ

We report both theoretically and experimentally a process of optical intrinsic orbit-orbit interaction with a vortex-antivortex structure nested in a freely propagating light field. The orbit-orbit interaction is originating from the coupling between different vortices and antivortices. Based on this process, we reveal the resultant controllable orbital-angular-momentum Hall effect by considering a typical structure, which comprises a vortex-antivortex pair and another vortex (or antivortex) as a controllable knob. The intrinsic Hall effect can be spatially manipulated by appropriately engineering the orbit-orbit interaction, namely arranging the initial distribution of these elements. This work can find interesting potential applications. For example, it provides an effective technique for controllable paired photon generation.

12.
J Biophotonics ; 17(4): e202300449, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38176397

RÉSUMÉ

Gram staining can classify bacterial species into two large groups based on cell wall differences. Our study revealed that within the same gram group (gram-positive or gram-negative), subtle cell wall variations can alter staining outcomes, with the peptidoglycan layer and lipid content significantly influencing this effect. Thus, bacteria within the same group can also be differentiated by their spectra. Using hyperspectral microscopy, we identified six species of intestinal bacteria with 98.1% accuracy. Our study also demonstrated that selecting the right spectral band and background calibration can enhance the model's robustness and facilitate precise identification of varying sample batches. This method is suitable for analyzing bacterial community pathologies.


Sujet(s)
Bactéries , Microscopie , Coloration et marquage , Peptidoglycane , Paroi cellulaire
13.
Opt Express ; 31(24): 40824-40835, 2023 Nov 20.
Article de Anglais | MEDLINE | ID: mdl-38041373

RÉSUMÉ

The self-healing phenomenon of structured light beams has been comprehensively investigated for its important role in various applications including optical tweezing, superresolution imaging, and optical communication. However, for different structured beams, there are different explanations for the self-healing effect, and a unified theory has not yet been formed. Here we report both theoretically and experimentally a study of the self-healing effect of structured beams in lenslike media, this is, inhomogeneous lenslike media with a quadratic gradient index. By observing the appearance of a number of shadows of obstructed structured wave fields it has been demonstrated that their self-healing in inhomogeneous media are the result of superposition of fundamental traveling waves. We have found that self-healing of structured beams occurs in this medium and, interestingly enough, that the shadows created in the process present sinusoidal propagating characteristics as determined by the geometrical ray theory in lenslike media. This work provides what we believe to be a new inhomogenous environment to explain the self-healing effect and is expected to deepen understanding of the physical mechanism.

14.
Light Sci Appl ; 12(1): 205, 2023 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-37640695

RÉSUMÉ

Rabi oscillation has been proven to be one of the cornerstones of quantum mechanics, triggering substantial investigations in different disciplines and various important applications both in the classical and quantum regimes. So far, two independent classes of wave states in the Rabi oscillations have been revealed as spin waves and orbital waves, while a Rabi wave state simultaneously merging the spin and orbital angular momentum has remained elusive. Here we report on the experimental and theoretical observation and control of spin-orbit-coupled Rabi oscillations in the higher-order regime of light. We constitute a pseudo spin-1/2 formalism and optically synthesize a magnetization vector through light-crystal interaction. We observe simultaneous oscillations of these ingredients in weak and strong coupling regimes, which are effectively controlled by a beam-dependent synthetic magnetic field. We introduce an electrically tunable platform, allowing fine control of transition between different oscillatory modes, resulting in an emission of orbital-angular-momentum beams with tunable topological structures. Our results constitute a general framework to explore spin-orbit couplings in the higher-order regime, offering routes to manipulating the spin and orbital angular momentum in three and four dimensions. The close analogy with the Pauli equation in quantum mechanics, nonlinear optics, etc., implies that the demonstrated concept can be readily generalized to different disciplines.

15.
Opt Express ; 31(15): 25004-25012, 2023 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-37475314

RÉSUMÉ

We report on a high-repetition-rate and high-beam-quality all-solid-state nanosecond pulsed deep-red laser source by intracavity second harmonic generation of the actively Q-switched Nd:YVO4/KGW Raman laser. The polarization of the 1342 nm fundamental laser was aligned with the Ng and Nm axes of KGW crystal for accessing the eye-safe Raman lasers at 1496 and 1526 nm, respectively. With the aid of the elaborately designed V-shaped resonator and the composite Nd:YVO4 crystal, excellent mode matching and good thermal diffusion have been confirmed. Under an optimal pulse repetition frequency of 25 kHz, the average output powers of the Raman lasers at 1496 and 1526 nm were measured to be 3.7 and 4.9 W with the superior beam quality factor of M2 = 1.2, respectively. Subsequently, by incorporating a bismuth borate (BIBO) crystal, the deep-red laser source was able to lase separately two different spectral lines at 748 and 763 nm, yielding the maximum average output powers of 2.5 and 3.2 W with the pulse durations of 15.6 and 11.3 ns, respectively. The resulting beam quality was determined to be near-diffraction-limited with M2 = 1.28.

16.
Vaccines (Basel) ; 11(5)2023 May 16.
Article de Anglais | MEDLINE | ID: mdl-37243091

RÉSUMÉ

Background: An unprecedented coronavirus disease 2019 (COVID-19) wave occurred in China between December 2022 and January 2023, challenging the efficacy of the primary series of COVID-19 vaccines. The attitudes toward future COVID-19 booster vaccines (CBV) after the massive breakthrough infection among healthcare workers remain unknown. This study aimed to explore the prevalence and determinants of future CBV refusal after the unprecedented COVID-19 wave among healthcare workers. Methods: Between 9 and 19 February 2023, a cross-sectional nationwide online survey was conducted using a self-administered questionnaire vaccine among healthcare workers in China. Sociodemographics, profession, presence of chronic medical conditions, previous COVID-19 infection, attitudes towards future CBV, and reasons for future CBV refusal were collected. We estimated odds ratio [OR] with 95% confidence interval [CI] using a multivariable logistic regression model to explore the factors associated with future CBV refusal. Results: Among the 1618 participants who completed the survey, 1511 respondents with two or more doses of COVID-19 vaccines were analyzed. A total of 648 (41.8%) of respondents were unwilling to receive a future CBV. Multivariable logistic regression analysis revealed the association of CBV refusal with profession (vs. other staff, physician-adjusted OR 1.17, 95%CI 0.79-1.72, nurse-adjusted OR 1.88, 95%CI 1.24-2.85, p = 0.008), history of allergy (adjusted OR 1.72, 95%CI 1.05-2.83, p = 0.032), a lower self-perceived risk of future COVID-19 infection (p < 0.001), and a lower belief in CBV effectiveness (p = 0.014), safety (p < 0.001), and necessities for healthcare workers and the public (p < 0.001, respectively). Conclusions: Our findings highlight that a considerable proportion of healthcare workers were against a future booster dose after an unprecedented COVID-19 wave. Self-perception of future COVID-19 risk, and potential harm or doubtful efficacy of vaccines are the main determinants. Our findings may help public health authorities to establish future COVID-19 vaccination programs.

17.
Opt Express ; 31(5): 8494-8502, 2023 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-36859963

RÉSUMÉ

High beam quality 588 nm radiation was realized based on a frequency-doubled crystalline Raman laser. The bonding crystal of YVO4/Nd:YVO4/YVO4 was used as the laser gain medium, which can accelerate the thermal diffusion. The intracavity Raman conversion and the second harmonic generation were realized by a YVO4 crystal and an LBO crystal, respectively. Under an incident pump power of 49.2 W and a pulse repetition frequency of 50 kHz, the 588 nm power of 2.85 W was obtained with a pulse duration of 3 ns, corresponding to a diode-to-yellow laser conversion efficiency of 5.75% and a slope efficiency of 7.6%. Meanwhile, a single pulse's pulse energy and peak power were 57 µJ and 19 kW, respectively. The severe thermal effects of the self-Raman structure were overcome in the V-shaped cavity, which has excellent mode matching, and combined with the self-cleaning effect of `Raman scattering, the beam quality factor M2 was effectively improved, which was measured optimally to be Mx 2 = 1.207, and My 2 = 1.200, with the incident pump power being 49.2 W.

18.
Opt Lett ; 48(3): 799-802, 2023 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-36723592

RÉSUMÉ

We demonstrate the first multi-segmented Nd:YLF laser, to the best of our knowledge. The multi-segmented crystal was designed to straightforwardly aim for the minimum thermal stress without sacrificing the overall laser efficiency, with the influence of the pump beam waist position considered in particular. Integrating the enhanced thermo-mechanical resistance of multi-segmented crystal and the alleviated heat load of low quantum defect pumping, this end-pumped 1314 nm Nd:YLF laser system delivered a maximum continuous-wave output power of up to 35.5 W under a pump power of 105 W, corresponding to an optical-to-optical efficiency of 33.8%. Furthermore, by incorporating an acousto-optic modulator, an active Q-switching oscillator was accomplished, yielding a maximum average output power of 22.9 W at a pulse repetition frequency (PRF) of 20 kHz and a largest pulse energy of 13.6 mJ at a PRF of 1 kHz.

19.
Opt Express ; 31(1): 265-273, 2023 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-36606965

RÉSUMÉ

We demonstrate an efficient wavelength-selectable output in the attractive deep-red spectral region from an intracavity frequency converted Nd:YLF/KGW Raman laser. Driven by an acousto-optic Q-switched 1314 nm Nd:YLF laser, two first-Stokes waves at 1461 and 1490 nm were generated owing to the bi-axial properties of KGW crystal. By incorporating intracavity sum-frequency generation and second-harmonic generation with an angle-tuned bismuth borate (BIBO) crystal, four discrete deep-red laser emission lines were yielded at the wavelengths of 692, 698, 731, and 745 nm. Under the incident pump power of 50 W and the repetition rate of 4 kHz, the maximum average output powers of 2.4, 2.7, 3.3, and 3.6 W were attained with the pulse durations of 3.4, 3.2, 4.3, and 3.7 ns, respectively, corresponding to the peak powers up to 177, 209, 190, and 245 kW. The results indicate that the Nd:YLF/KGW Raman laser combined with an angle-adjusted BIBO crystal provides a reliable and convenient approach to achieve the selectable multi-wavelength deep-red laser with short pulse duration and high peak power.

20.
J Biophotonics ; 16(3): e202200237, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36308004

RÉSUMÉ

Concentration-dependent carbon dot (CD) fluorescence was developed and utilized alongside hyperspectral microscopy as a specific labeling and identification technique for bacteria. Staining revealed that the CD concentration within cells depended on the characteristic intracellular environment of the species. Therefore, based on the concentration dependence of the CD fluorescence, different bacterial species were specifically labeled. Hyperspectral microscopy captured subtle fluorescence variations to identify bacteria. Method validation using Bacillus subtilis and Bacillus licheniformis succeeded with an identification accuracy of 99%. As a simple, rapid method for labeling and identifying bacterial species in mixtures, this technique has excellent potential for bacterial community studies.


Sujet(s)
Carbone , Imagerie hyperspectrale , Bacillus subtilis , Coloration et marquage
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE