Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 340
Filtrer
1.
Aging (Albany NY) ; 162024 Sep 26.
Article de Anglais | MEDLINE | ID: mdl-39332020

RÉSUMÉ

PURPOSE: Proliferation of stromal connective tissue is a hallmark of pancreatic adenocarcinoma (PAAD). The engagement of activated cancer-associated fibroblasts (CAFs) contributes to the progression of PAAD through their involvement in tumor fibrogenesis. However, the prognostic significance of CAF-based risk signature in PAAD has not been explored. METHODS: The single-cell RNA sequencing (scRNA-seq) data sourced from GSE155698 within the Gene Expression Omnibus (GEO) database was supplemented by bulk RNA sequencing data from The Cancer Genome Atlas (TCGA) and microarray data retrieved from the GEO database. The scRNA-seq data underwent processing via the Seurat package to identify distinct CAF clusters utilizing specific CAF markers. Differential gene expression analysis between normal and tumor samples was conducted within the TCGA-PAAD cohort. Univariate Cox regression analysis pinpointed genes associated with CAF clusters, identifying prognostic CAF-related genes. These genes were utilized in LASSO regression to craft a predictive risk signature. Subsequently, integrating clinicopathological traits and the risk signature, a nomogram model was constructed. RESULTS: Our scRNA-seq analysis unveiled four distinct CAF clusters in PAAD, with two linked to PAAD prognosis. Among 207 identified DEGs, 148 exhibited significant correlation with these CAF clusters, forming the basis of a seven-gene risk signature. This signature emerged as an independent predictor in multivariate analysis for PAAD and demonstrated predictive efficacy in immunotherapeutic outcomes. Additionally, a novel nomogram, integrating age and the CAF-based risk signature, exhibited robust predictability and reliability in prognosticating PAAD. Moreover, the risk signature displayed substantial correlations with stromal and immune scores, as well as specific immune cell types. CONCLUSIONS: The prognosis of PAAD can be accurately predicted using the CAF-based risk signature, and a thorough analysis of the PAAD CAF signature may aid in deciphering the patient's immunotherapy response and presenting fresh cancer treatment options.

2.
MedComm (2020) ; 5(7): e649, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38988494

RÉSUMÉ

Skeletal muscle is an important motor organ with multinucleated myofibers as its smallest cellular units. Myofibers are formed after undergoing cell differentiation, cell-cell fusion, myonuclei migration, and myofibril crosslinking among other processes and undergo morphological and functional changes or lesions after being stimulated by internal or external factors. The above processes are collectively referred to as myogenesis. After myofibers mature, the function and behavior of skeletal muscle are closely related to the voluntary movement of the body. In this review, we systematically and comprehensively discuss the physiological and pathological processes associated with skeletal muscles from five perspectives: molecule basis, myogenesis, biological function, adaptive changes, and myopathy. In the molecular structure and myogenesis sections, we gave a brief overview, focusing on skeletal muscle-specific fusogens and nuclei-related behaviors including cell-cell fusion and myonuclei localization. Subsequently, we discussed the three biological functions of skeletal muscle (muscle contraction, thermogenesis, and myokines secretion) and its response to stimulation (atrophy, hypertrophy, and regeneration), and finally settled on myopathy. In general, the integration of these contents provides a holistic perspective, which helps to further elucidate the structure, characteristics, and functions of skeletal muscle.

3.
Pharmacol Res ; 206: 107297, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38977207

RÉSUMÉ

Regulatory T (Treg) cells play a key role in maintaining immune tolerance and tissue homeostasis. However, in some disease microenvironments, Treg cells exhibit fragility, which manifests as preserved FoxP3 expression accompanied by inflammation and loss of immunosuppression. Fragile Treg cells are formatively, phenotypically and functionally diverse in various diseases, further complicating the role of Treg cells in the immunotherapeutic response and offering novel targets for disease treatment by modulating specific Treg subsets. In this review, we summarize findings on fragile Treg cells to provide a framework for characterizing the formation and role of fragile Treg cells in different diseases, and we discuss how this information may guide the development of more specific Treg-targeted immunotherapies.


Sujet(s)
Homéostasie , Lymphocytes T régulateurs , Humains , Lymphocytes T régulateurs/immunologie , Animaux , Homéostasie/immunologie , Facteurs de transcription Forkhead/métabolisme , Facteurs de transcription Forkhead/immunologie , Immunothérapie
5.
Clin Mol Hepatol ; 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38915206

RÉSUMÉ

Background/Aims: Ubiquitination is widely involved in the progression of hepatocellular carcinoma (HCC) by regulating various cellular processes. However, systematic strategies for screening core ubiquitin-related genes, clarifying their functions and mechanisms, and ultimately developing potential therapeutics for patients with HCC are still lacking. Methods: Cox and LASSO regression analyses were performed to construct a ubiquitin-related gene prediction model for HCC. Loss- and gain-of-function studies, transcriptomic and metabolomics analysis were used to explore the function and mechanism of UBE2S on HCC cell glycolysis and growth. Results: Based on 1423 ubiquitin-related genes, a four-gene signature was successfully constructed to evaluate the prognosis of patients with HCC. UBE2S was identified in this signature with the potential to predict the survival of patients with HCC. E2F2 transcriptionally upregulated UBE2S expression by directly binding to its promoter. UBE2S positively regulated glycolysis in a HIF-1α-dependent manner, thus promoting the proliferation of HCC cells. Mechanistically, UBE2S enhanced K11-linkage polyubiquitination at lysine residues 171 and 196 of VHL independent of E3 ligase, thereby indirectly stabilizing HIF-1α protein levels by mediating the degradation of VHL by the proteasome. In particular, the combination of cephalomannine, a small molecule compound that inhibits the expression of UBE2S, and PX-478, an inhibitor of HIF-1α, significantly improved the anti-tumor efficacy. Conclusions: UBE2S is identified as a key biomarker in HCC among the thousands of ubiquitin-related genes and promotes glycolysis by E3 enzyme-independent ubiquitination, thus serving as a therapeutic target for the treatment of HCC.

6.
Adv Sci (Weinh) ; 11(29): e2400611, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38873823

RÉSUMÉ

Immunosuppression is a major hallmark of tumor progression in non-small cell lung cancer (NSCLC). Cluster of differentiation 147 (CD147), an important pro-tumorigenic factor, is closely linked to NSCLC immunosuppression. However, the role of CD147 di-methylation in the immunosuppressive tumor microenvironment (TME) remains unclear. Here, di-methylation of CD147 at Lys148 (CD147-K148me2) is identified as a common post-translational modification (PTM) in NSCLC that is significantly associated with unsatisfying survival outcomes among NSCLC sufferers, especially those in the advanced stages of the disease. The methyltransferase NSD2 catalyzes CD147 to generate CD147-K148me2. Further analysis demonstrates that CD147-K148me2 reestablishes the immunosuppressive TME and promotes NSCLC progression. Mechanistically, this modification promotes the interaction between cyclophilin A (CyPA) and CD147, and in turn, increases CCL5 gene transcription by activating p38-ZBTB32 signaling, leading to increased NSCLC cell-derived CCL5 secretion. Subsequently, CD147-K148me2-mediated CCL5 upregulation facilitates M2-like tumor-associated macrophage (TAM) infiltration in NSCLC tissues via CCL5/CCR5 axis-dependent intercellular crosstalk between tumor cells and macrophages, which is inhibited by blocking CD147-K148me2 with the targeted antibody 12C8. Overall, this study reveals the role of CD147-K148me2-driven intercellular crosstalk in the development of NSCLC immunosuppression, and provides a potential interventional strategy for PTM-targeted NSCLC therapy.


Sujet(s)
Antigènes CD147 , Carcinome pulmonaire non à petites cellules , Chimiokine CCL5 , Tumeurs du poumon , Récepteurs CCR5 , Microenvironnement tumoral , Carcinome pulmonaire non à petites cellules/métabolisme , Carcinome pulmonaire non à petites cellules/génétique , Carcinome pulmonaire non à petites cellules/immunologie , Carcinome pulmonaire non à petites cellules/anatomopathologie , Humains , Tumeurs du poumon/métabolisme , Tumeurs du poumon/génétique , Tumeurs du poumon/immunologie , Antigènes CD147/métabolisme , Antigènes CD147/génétique , Souris , Animaux , Récepteurs CCR5/métabolisme , Récepteurs CCR5/génétique , Chimiokine CCL5/métabolisme , Chimiokine CCL5/génétique , Microenvironnement tumoral/immunologie , Macrophages/métabolisme , Macrophages/immunologie , Lignée cellulaire tumorale , Immunosuppression thérapeutique , Modèles animaux de maladie humaine , Transduction du signal
7.
Front Immunol ; 15: 1375138, 2024.
Article de Anglais | MEDLINE | ID: mdl-38812501

RÉSUMÉ

Objectives: The effects of cold exposure on whole-body metabolism in humans have gained increasing attention. Brown or beige adipose tissues are crucial in cold-induced thermogenesis to dissipate energy and thus have the potential to combat metabolic disorders. Despite the immune regulation of thermogenic adipose tissues, the overall changes in vital immune cells during distinct cold periods remain elusive. This study aimed to discuss the overall changes in immune cells under different cold exposure periods and to screen several potential immune cell subpopulations on thermogenic regulation. Methods: Cibersort and mMCP-counter algorithms were employed to analyze immune infiltration in two (brown and beige) thermogenic adipose tissues under distinct cold periods. Changes in some crucial immune cell populations were validated by reanalyzing the single-cell sequencing dataset (GSE207706). Flow cytometry, immunofluorescence, and quantitative real-time PCR assays were performed to detect the proportion or expression changes in mouse immune cells of thermogenic adipose tissues under cold challenge. Results: The proportion of monocytes, naïve, and memory T cells increased, while the proportion of NK cells decreased under cold exposure in brown adipose tissues. Conclusion: Our study revealed dynamic changes in immune cell profiles in thermogenic adipose tissues and identified several novel immune cell subpopulations, which may contribute to thermogenic activation of adipose tissues under cold exposure.


Sujet(s)
Tissu adipeux brun , Basse température , Thermogenèse , Thermogenèse/immunologie , Animaux , Souris , Tissu adipeux brun/immunologie , Tissu adipeux brun/métabolisme , Souris de lignée C57BL , Mâle , Tissu adipeux beige/métabolisme , Tissu adipeux beige/immunologie , Tissu adipeux/immunologie , Tissu adipeux/métabolisme , Cellules tueuses naturelles/immunologie , Cellules tueuses naturelles/métabolisme , Monocytes/immunologie , Monocytes/métabolisme
8.
Animal Model Exp Med ; 7(4): 460-470, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38591343

RÉSUMÉ

The mouse genome has a high degree of homology with the human genome, and its physiological, biochemical, and developmental regulation mechanisms are similar to those of humans; therefore, mice are widely used as experimental animals. However, it is undeniable that interspecies differences between humans and mice can lead to experimental errors. The differences in the immune system have become an important factor limiting current immunological research. The application of immunodeficient mice provides a possible solution to these problems. By transplanting human immune cells or tissues, such as peripheral blood mononuclear cells or hematopoietic stem cells, into immunodeficient mice, a human immune system can be reconstituted in the mouse body, and the engrafted immune cells can elicit human-specific immune responses. Researchers have been actively exploring the development and differentiation conditions of host recipient animals and grafts in order to achieve better immune reconstitution. Through genetic engineering methods, immunodeficient mice can be further modified to provide a favorable developmental and differentiation microenvironment for the grafts. From initially only being able to reconstruct single T lymphocyte lineages, it is now possible to reconstruct lymphoid and myeloid cells, providing important research tools for immunology-related studies. In this review, we compare the differences in immune systems of humans and mice, describe the development history of human immune reconstitution from the perspectives of immunodeficient mice and grafts, and discuss the latest advances in enhancing the efficiency of human immune cell reconstitution, aiming to provide important references for immunological related researches.


Sujet(s)
Reconstitution immunitaire , Animaux , Humains , Souris , Transplantation de cellules souches hématopoïétiques
9.
MedComm (2020) ; 5(3): e512, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38469549

RÉSUMÉ

Therapeutic antibodies (Abs) improve the clinical outcome of cancer patients. However, on-target off-tumor toxicity limits Ab-based therapeutics. Cluster of differentiation 147 (CD147) is a tumor-associated membrane antigen overexpressed in cancer cells. Ab-based drugs targeting CD147 have achieved inadequate clinical benefits for liver cancer due to side effects. Here, by using glycoengineering and hypoxia-activation strategies, we developed a conditional Ab-dependent cellular cytotoxicity (ADCC)-enhanced humanized anti-CD147 Ab, HcHAb18-azo-PEG5000 (HAP18). Afucosylated ADCC-enhanced HcHAb18 Ab was produced by a fed-batch cell culture system. Azobenzene (Azo)-linked PEG5000 conjugation endowed HAP18 Ab with features of hypoxia-responsive delivery and selective targeting. HAP18 Ab potently inhibits the migration, invasion, and matrix metalloproteinase secretion, triggers the cytotoxicity and apoptosis of cancer cells, and induces ADCC, complement-dependent cytotoxicity, and Ab-dependent cellular phagocytosis under hypoxia. In xenograft mouse models, HAP18 Ab selectively targets hypoxic liver cancer tissues but not normal organs or tissues, and has potent tumor-inhibiting effects. HAP18 Ab caused negligible side effects and exhibited superior pharmacokinetics compared to those of parent HcHAb18 Ab. The hypoxia-activated ADCC-enhanced humanized HAP18 Ab safely confers therapeutic efficacy against liver cancer with improved selectivity. This study highlights that hypoxia activation is a promising strategy for improving the tumor targeting potential of anti-CD147 Ab drugs.

10.
Biomolecules ; 14(2)2024 Feb 02.
Article de Anglais | MEDLINE | ID: mdl-38397417

RÉSUMÉ

Severe combined immunodeficient (SCID) mice serve as a critical model for human xenotransplantation studies, yet they often suffer from low engraftment rates and susceptibility to graft-versus-host disease (GVHD). Moreover, certain SCID strains demonstrate 'immune leakage', underscoring the need for novel model development. Here, we introduce an SCID mouse model with a targeted disruption of the dclre1c gene, encoding Artemis, which is essential for V(D)J recombination and DNA repair during T cell receptor (TCR) and B cell receptor (BCR) assembly. Artemis deficiency precipitates a profound immunodeficiency syndrome, marked by radiosensitivity and compromised T and B lymphocyte functionality. Utilizing CRISPR/Cas9-mediated gene editing, we generated dclre1c-deficient mice with an NOD genetic background. These mice exhibited a radiosensitive SCID phenotype, with pronounced DNA damage and defective thymic, splenic and lymph node development, culminating in reduced T and B lymphocyte populations. Notably, both cell lines and patient-derived tumor xenografts were successfully engrafted into these mice. Furthermore, the human immune system was effectively rebuilt following peripheral blood mononuclear cells (PBMCs) transplantation. The dclre1c-knockout NOD mice described herein represent a promising addition to the armamentarium of models for xenotransplantation, offering a valuable platform for advancing human immunobiological research.


Sujet(s)
Endonucleases , Sujet immunodéprimé , Agranulocytes , Protéines nucléaires , Transplantation hétérologue , Animaux , Humains , Souris , Endonucleases/génétique , Hétérogreffes , Souris de lignée NOD , Souris knockout , Souris SCID , Mutation , Protéines nucléaires/génétique , Sujet immunodéprimé/génétique , Modèles animaux
11.
Circ Res ; 134(2): 165-185, 2024 01 19.
Article de Anglais | MEDLINE | ID: mdl-38166463

RÉSUMÉ

BACKGROUND: Atherosclerosis is a globally prevalent chronic inflammatory disease with high morbidity and mortality. The development of atherosclerotic lesions is determined by macrophages. This study aimed to investigate the specific role of myeloid-derived CD147 (cluster of differentiation 147) in atherosclerosis and its translational significance. METHODS AND RESULTS: We generated mice with a myeloid-specific knockout of CD147 and mice with restricted CD147 overexpression, both in an apoE-deficient (ApoE-/-) background. Here, the myeloid-specific deletion of CD147 ameliorated atherosclerosis and inflammation. Consistent with our in vivo data, macrophages isolated from myeloid-specific CD147 knockout mice exhibited a phenotype shift from proinflammatory to anti-inflammatory macrophage polarization in response to lipopolysaccharide/IFN (interferon)-γ. These macrophages demonstrated a weakened proinflammatory macrophage phenotype, characterized by reduced production of NO and reactive nitrogen species derived from iNOS (inducible NO synthase). Mechanistically, the TRAF6 (tumor necrosis factor receptor-associated factor 6)-IKK (inhibitor of κB kinase)-IRF5 (IFN regulatory factor 5) signaling pathway was essential for the effect of CD147 on proinflammatory responses. Consistent with the reduced size of the necrotic core, myeloid-specific CD147 deficiency diminished the susceptibility of iNOS-mediated late apoptosis, accompanied by enhanced efferocytotic capacity mediated by increased secretion of GAS6 (growth arrest-specific 6) in proinflammatory macrophages. These findings were consistent in a mouse model with myeloid-restricted overexpression of CD147. Furthermore, we developed a new atherosclerosis model in ApoE-/- mice with humanized CD147 transgenic expression and demonstrated that the administration of an anti-human CD147 antibody effectively suppressed atherosclerosis by targeting inflammation and efferocytosis. CONCLUSIONS: Myeloid CD147 plays a crucial role in the growth of plaques by promoting inflammation in a TRAF6-IKK-IRF5-dependent manner and inhibiting efferocytosis by suppressing GAS6 during proinflammatory conditions. Consequently, the use of anti-human CD147 antibodies presents a complementary therapeutic approach to the existing lipid-lowering strategies for treating atherosclerotic diseases.


Sujet(s)
Athérosclérose , Plaque d'athérosclérose , Souris , Animaux , , Facteur-6 associé aux récepteurs de TNF/métabolisme , Athérosclérose/métabolisme , Inflammation/génétique , Souris knockout , Phénotype , Apolipoprotéines E , Facteurs de régulation d'interféron/génétique , Souris de lignée C57BL
12.
Int J Mol Sci ; 25(2)2024 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-38256128

RÉSUMÉ

Aberrant protein post-translational modification is a hallmark of malignant tumors. Lysine succinylation (Ksucc) plays a vital role in cell energy metabolism in various cancers. However, whether succinylation can be catalyzed by acetyltransferase p300 remains unclear. In this study, we unveiled that p300 is a "writer" for succinylation, and p300-mediated Ksucc promotes cell glycometabolism in lung adenocarcinoma (LUAD). Specifically, our succinylome data revealed that EP300 deficiency leads to the systemic reduction of Ksucc, and 79.55% of the p300-succinylated proteins were found in the cytoplasm, which were primarily enriched in the carbohydrate metabolism process. Interestingly, deleting EP300 led to a notable decrease in Ksucc levels on several glycolytic enzymes, especially Phosphoglycerate Kinase 1 (PGK1). Mutation of the succinylated site of PGK1 notably hindered cell glycolysis and lactic acid excretion. Metabolomics in vivo indicated that p300-caused metabolic reprogramming was mainly attributed to the altered carbohydrate metabolism. In addition, 89.35% of LUAD patients exhibited cytoplasmic localization of p300, with higher levels in tumor tissues than adjacent normal tissues. High levels of p300 correlated with advanced tumor stages and poor prognosis of LUAD patients. Briefly, we disclose the activity of p300 to catalyze succinylation, which contributes to cell glucose metabolic reprogramming and malignant progression of lung cancer.


Sujet(s)
Adénocarcinome pulmonaire , Protéine p300-E1A , Tumeurs du poumon , Humains , Adénocarcinome pulmonaire/génétique , Glucose , Tumeurs du poumon/génétique , , Protéine p300-E1A/génétique
13.
Cell Mol Immunol ; 21(3): 292-308, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38287103

RÉSUMÉ

CD8+ T-cell exhaustion is a state of dysfunction that promotes tumor progression and is marked by the generation of Slamf6+ progenitor exhausted (Texprog) and Tim-3+ terminally exhausted (Texterm) subpopulations. Inhibitor of DNA binding protein 2 (Id2) has been shown to play important roles in T-cell development and CD8+ T-cell immunity. However, the role of Id2 in CD8+ T-cell exhaustion is unclear. Here, we found that Id2 transcriptionally and epigenetically regulates the generation of Texprog cells and their conversion to Texterm cells. Genetic deletion of Id2 dampens CD8+ T-cell-mediated immune responses and the maintenance of stem-like CD8+ T-cell subpopulations, suppresses PD-1 blockade and increases tumor susceptibility. Mechanistically, through its HLH domain, Id2 binds and disrupts the assembly of the Tcf3-Tal1 transcriptional regulatory complex, and thus modulates chromatin accessibility at the Slamf6 promoter by preventing the interaction of Tcf3 with the histone lysine demethylase LSD1. Therefore, Id2 increases the abundance of the permissive H3K4me2 mark on the Tcf3-occupied E-boxes in the Slamf6 promoter, modulates chromatin accessibility at the Slamf6 promoter and epigenetically regulates the generation of Slamf6+ Texprog cells. An LSD1 inhibitor GSK2879552 can rescue the Id2 knockout phenotype in tumor-bearing mice. Inhibition of LSD1 increases the abundance of Slamf6+Tim-3- Texprog cells in tumors and the expression level of Tcf1 in Id2-deleted CD8+ T cells. This study demonstrates that Id2-mediated transcriptional and epigenetic modification drives hierarchical CD8+ T-cell exhaustion, and the mechanistic insights gained may have implications for therapeutic intervention with tumor immune evasion.


Sujet(s)
Lymphocytes T CD8+ , Tumeurs , Souris , Animaux , Récepteur cellulaire-2 du virus de l'hépatite A/métabolisme , Épuisement des cellules T , Tumeurs/anatomopathologie , Histone Demethylases/métabolisme , Chromatine/métabolisme
14.
Food Chem ; 439: 138110, 2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-38043282

RÉSUMÉ

Triazole pesticides are widely used in modern agricultural practices to improve agricultural production quality. Simultaneously, unreasonable and standardized use of triazole pesticides could induce a series of potential diseases of humans. Surface-enhanced Raman spectroscopy has attracted enormous research attention because of its label-free and fingerprint detection capability to noninvasively trace extremely low concentration analytes. To the best of our knowledge, there is a lack of systematic comparison regarding the Raman spectral information of triazole pesticides in existing literatures. In this work, we successfully captured the characteristic peaks of six different triazole pesticides individually and simultaneously using Au decahedral nanoparticles. The proposed method exhibited remarkable detection sensitivity, a wide dynamic range, and the capability for in-situ detection of multiple pesticide residues on bean, apple, and vegetable surfaces with satisfactory recovery rates. Therefore, our proposed SERS platform have great applications in agricultural products safety, environmental monitoring and other fields.


Sujet(s)
Nanoparticules métalliques , Résidus de pesticides , Pesticides , Humains , Résidus de pesticides/analyse , Fruit/composition chimique , Légumes/composition chimique , Pesticides/analyse , Nanoparticules métalliques/composition chimique , Analyse spectrale Raman/méthodes , Or/composition chimique
15.
J Pharm Anal ; 13(10): 1135-1152, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-38024852

RÉSUMÉ

Morphine is a frequently used analgesic that activates the mu-opioid receptor (MOR), which has prominent side effects of tolerance. Although the inefficiency of morphine in inducing the endocytosis of MOR underlies the development of morphine tolerance, currently, there is no effective therapy to treat morphine tolerance. In the current study, we aimed to develop a monoclonal antibody (mAb) precisely targeting MOR and to determine its therapeutic efficacy on morphine tolerance and the underlying molecular mechanisms. We successfully prepared a mAb targeting MOR, named 3A5C7, by hybridoma technique using a strategy of deoxyribonucleic acid immunization combined with cell immunization, and identified it as an immunoglobulin G mAb with high specificity and affinity for MOR and binding ability to antigens with spatial conformation. Treatment of two cell lines, HEK293T and SH-SY5Y, with 3A5C7 enhanced morphine-induced MOR endocytosis via a G protein-coupled receptor kinase 2 (GRK2)/ß-arrestin2-dependent mechanism, as demonstrated by immunofluorescence staining, flow cytometry, Western blotting, coimmunoprecipitation, and small interfering ribonucleic acid (siRNA)-based knockdown. This mAb also allowed MOR recycling from cytoplasm to plasma membrane and attenuated morphine-induced phosphorylation of MOR. We established an in vitro morphine tolerance model using differentiated SH-SY5Y cells induced by retinoic acid. Western blot, enzyme-linked immunosorbent assays, and siRNA-based knockdown revealed that 3A5C7 mAb diminished hyperactivation of adenylate cyclase, the in vitro biomarker of morphine tolerance, via the GRK2/ß-arrestin2 pathway. Furthermore, in vivo hotplate test demonstrated that chronic intrathecal administration of 3A5C7 significantly alleviated morphine tolerance in mice, and withdrawal jumping test revealed that both chronic and acute 3A5C7 intrathecal administration attenuated morphine dependence. Finally, intrathecal electroporation of silencing short hairpin RNA illustrated that the in vivo anti-tolerance and anti-dependence efficacy of 3A5C7 was mediated by enhanced morphine-induced MOR endocytosis via GRK2/ß-arrestin2 pathway. Collectively, our study provided a therapeutic mAb, 3A5C7, targeting MOR to treat morphine tolerance, mediated by enhancing morphine-induced MOR endocytosis. The mAb 3A5C7 demonstrates promising translational value to treat clinical morphine tolerance.

16.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-37762128

RÉSUMÉ

Up to 50% of hepatocellular carcinoma (HCC) is caused by hepatitis B virus (HBV) infection, and the surface protein of HBV is essential for the progression of HBV-related HCC. The expression of large HBV surface antigen (LHB) is presented in HBV-associated HCC tissues and is significantly associated with the development of HCC. Gene set enrichment analysis revealed that LHB overexpression regulates the cell cycle process. Excess LHB in HCC cells induced chronic endoplasmic reticulum (ER) stress and was significantly correlated with tumor growth in vivo. Cell cycle analysis showed that cell cycle progression from G1 to S phase was greatly enhanced in vitro. We identified intensive crosstalk between ER stress and cell cycle progression in HCC. As an important regulator of the G1/S checkpoint, p27 was transcriptionally upregulated by transcription factors ATF4 and XBP1s, downstream of the unfolded protein response pathway. Moreover, LHB-induced ER stress promoted internal ribosome-entry-site-mediated selective translation of p27, and E3 ubiquitin ligase HRD1-mediated p27 ubiquitination and degradation. Ultimately, the decrease in p27 protein levels reduced G1/S arrest and promoted the progress of HCC by regulating the cell cycle.


Sujet(s)
Carcinome hépatocellulaire , Hépatite B , Tumeurs du foie , Humains , Carcinome hépatocellulaire/génétique , Inhibiteur p27 de kinase cycline-dépendante , Hépatite B/complications , Virus de l'hépatite B , Facteurs immunologiques , Tumeurs du foie/génétique , Protéines membranaires , Réponse aux protéines mal repliées
17.
Cell Death Discov ; 9(1): 363, 2023 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-37777514

RÉSUMÉ

Obese people with acute pancreatitis (AP) have an increased risk of developing severe acute pancreatitis (SAP), which prolongs the length of hospital stay and increases mortality. Thus, elucidation of the mechanisms through which SAP occurs in obese individuals will provide clues for possible treatment targets. Differences in early events in obese or lean patients with AP have not been conclusively reported. We selected C57BL/6 mice as lean mice models, ob/ob mice or diet induced obese (DIO) mice as obese mice models and then induced experimental AP in mice via injections of caerulein. There were suppressed p-AMPK expressions in the pancreas of obese mice, compared with same-age lean C57BL/6 mice, which were further reduced in AP mice models. Obese AP mice were treated using AICAR, a direct AMPK agonist, which prevented pancreatic damage and cell death, suppressed pancreatic enzyme levels in serum, reduced the areas of fat saponification in the peritoneal cavity, prevented injury in other organs and decreased mice mortality rate. Further assays showed that AICAR activates p-AMPK to stabilize pro-caspase-8. Pro-caspase-8 enhances RIPK3 degradation, inhibits pancreatic acinar cell necroptosis, and downregulates the release of pancreatic enzymes. Thus, activation of AMPK by AICAR alleviates pancreatic acinar cell necroptosis and converts SAP to mild acute pancreatitis in obese mice.

18.
Zool Res ; 44(5): 967-980, 2023 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-37721106

RÉSUMÉ

Video-based action recognition is becoming a vital tool in clinical research and neuroscientific study for disorder detection and prediction. However, action recognition currently used in non-human primate (NHP) research relies heavily on intense manual labor and lacks standardized assessment. In this work, we established two standard benchmark datasets of NHPs in the laboratory: MonkeyinLab (MiL), which includes 13 categories of actions and postures, and MiL2D, which includes sequences of two-dimensional (2D) skeleton features. Furthermore, based on recent methodological advances in deep learning and skeleton visualization, we introduced the MonkeyMonitorKit (MonKit) toolbox for automatic action recognition, posture estimation, and identification of fine motor activity in monkeys. Using the datasets and MonKit, we evaluated the daily behaviors of wild-type cynomolgus monkeys within their home cages and experimental environments and compared these observations with the behaviors exhibited by cynomolgus monkeys possessing mutations in the MECP2 gene as a disease model of Rett syndrome (RTT). MonKit was used to assess motor function, stereotyped behaviors, and depressive phenotypes, with the outcomes compared with human manual detection. MonKit established consistent criteria for identifying behavior in NHPs with high accuracy and efficiency, thus providing a novel and comprehensive tool for assessing phenotypic behavior in monkeys.


Sujet(s)
Apprentissage profond , Animaux , Macaca fascicularis , Squelette , Mutation , Phénotype
19.
Int J Mol Sci ; 24(15)2023 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-37569693

RÉSUMÉ

As an emerging treatment strategy for malignant tumors, chimeric antigen receptor T (CAR-T) cell therapy has been widely used in clinical practice, and its efficacy has been markedly improved in the past decade. However, the clinical effect of CAR-T therapy is not so satisfying, especially in solid tumors. Even in hematologic malignancies, a proportion of patients eventually relapse after receiving CAR-T cell infusions, owing to the poor expansion and persistence of CAR-T cells. Recently, CRISPR/Cas9 technology has provided an effective approach to promoting the proliferation and persistence of CAR-T cells in the body. This technology has been utilized in CAR-T cells to generate a memory phenotype, reduce exhaustion, and screen new targets to improve the anti-tumor potential. In this review, we aim to describe the major causes limiting the persistence of CAR-T cells in patients and discuss the application of CRISPR/Cas9 in promoting CAR-T cell persistence and its anti-tumor function. Finally, we investigate clinical trials for CRISPR/Cas9-engineered CAR-T cells for the treatment of cancer.


Sujet(s)
Tumeurs , Récepteurs chimériques pour l'antigène , Humains , Lymphocytes T , Systèmes CRISPR-Cas/génétique , Édition de gène , Récidive tumorale locale/génétique , Immunothérapie adoptive , Tumeurs/génétique , Tumeurs/thérapie
20.
Cancer Commun (Lond) ; 43(9): 981-1002, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37405956

RÉSUMÉ

BACKGROUND: The mechanism of hepatitis B virus (HBV)-induced carcinogenesis remains an area of interest. The accumulation of hepatitis B surface antigen in the endoplasmic reticulum (ER) of hepatocytes stimulates persistent ER stress. Activity of the unfolded protein response (UPR) pathway of ER stress may play an important role in inflammatory cancer transformation. How the protective UPR pathway is hijacked by cells as a tool for malignant transformation in HBV-related hepatocellular carcinoma (HCC) is still unclear. Here, we aimed to define the key molecule hyaluronan-mediated motility receptor (HMMR) in this process and explore its role under ER stress in HCC development. METHODS: An HBV-transgenic mouse model was used to characterize the pathological changes during the tumor progression. Proteomics and transcriptomics analyses were performed to identify the potential key molecule, screen the E3 ligase, and define the activation pathway. Quantitative real-time PCR and Western blotting were conducted to detect the expression of genes in tissues and cell lines. Luciferase reporter assay, chromatin immunoprecipitation, coimmunoprecipitation, immunoprecipitation, and immunofluorescence were employed to investigate the molecular mechanisms of HMMR under ER stress. Immunohistochemistry was used to clarify the expression patterns of HMMR and related molecules in human tissues. RESULTS: We found sustained activation of ER stress in the HBV-transgenic mouse model of hepatitis-fibrosis-HCC. HMMR was transcribed by c/EBP homologous protein (CHOP) and degraded by tripartite motif containing 29 (TRIM29) after ubiquitination under ER stress, which caused the inconsistent expression of mRNA and protein. Dynamic expression of TRIM29 in the HCC progression regulated the dynamic expression of HMMR. HMMR could alleviate ER stress by increasing autophagic lysosome activity. The negative correlation between HMMR and ER stress, positive correlation between HMMR and autophagy, and negative correlation between ER stress and autophagy were verified in human tissues. CONCLUSIONS: This study identified the complicated role of HMMR in autophagy and ER stress, that HMMR controls the intensity of ER stress by regulating autophagy in HCC progression, which could be a novel explanation for HBV-related carcinogenesis.


Sujet(s)
Carcinome hépatocellulaire , Tumeurs du foie , Humains , Souris , Animaux , Carcinome hépatocellulaire/anatomopathologie , Tumeurs du foie/anatomopathologie , Stress du réticulum endoplasmique/génétique , Virus de l'hépatite B/génétique , Souris transgéniques , Carcinogenèse , Protéines de liaison à l'ADN , Facteurs de transcription
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE