Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 76
Filtrer
1.
J Hazard Mater ; 475: 134906, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-38889455

RÉSUMÉ

The alternating current (AC)-driven bioelectrochemical process, in-situ coupling cathodic reduction and anodic oxidation in a single electrode, offers a promising way for the mineralization of refractory aromatic pollutants (RAPs). Frequency modulation is vital for aligning reduction and oxidation phases in AC-driven bioelectrodes, potentially enhancing their capability to mineralize RAPs. Herein, a frequency-modulated AC-driven bioelectrode was developed to enhance RAP mineralization, exemplified by the degradation of Alizarin Yellow R (AYR). Optimal performance was achieved at a frequency of 1.67 mHz, resulting in the highest efficiency for AYR decolorization and subsequent mineralization of intermediates. Performance declined at both higher (3.33 and 8.30 mHz) and lower (0.83 mHz) frequencies. The bioelectrode exhibited superior electron utilization, bidirectional electron transfer, and redox bifunctionality, effectively aligning reduction and oxidation processes to enhance AYR mineralization. The 1.67 mHz frequency facilitated the assembly of a collaborative microbiome dedicated to AYR bio-mineralization, characterized by an increased abundance of functional consortia proficient in azo dye reduction (e.g., Stenotrophomonas and Shinella), aromatic intermediates oxidation (e.g., Sphingopyxis and Sphingomonas), and electron transfer (e.g., Geobacter and Pseudomonas). This study reveals the role of frequency modulation in AC-driven bioelectrodes for enhanced RAP mineralization, offering a novel and sustainable approach for treating RAP-bearing wastewater.


Sujet(s)
Électrodes , Oxydoréduction , Polluants chimiques de l'eau , Polluants chimiques de l'eau/composition chimique , Dépollution biologique de l'environnement , Composés azoïques/composition chimique , Agents colorants/composition chimique , Techniques électrochimiques , Anthraquinones/composition chimique
2.
Water Res ; 258: 121778, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38795549

RÉSUMÉ

Biotechnology for wastewater treatment is mainstream and effective depending upon microbial redox reactions to eliminate diverse contaminants and ensure aquatic ecological health. However, refractory organic nitrogen compounds (RONCs, e.g., nitro-, azo-, amide-, and N-heterocyclic compounds) with complex structures and high toxicity inhibit microbial metabolic activity and limit the transformation of organic nitrogen to inorganic nitrogen. This will eventually result in non-compliance with nitrogen discharge standards. Numerous efforts suggested that applying exogenous electron donors or acceptors, such as solid electrodes (electrostimulation) and limited oxygen (micro-aeration), could potentially regulate microbial redox reactions and catabolic pathways, and facilitate the biotransformation of RONCs. This review provides comprehensive insights into the microbial regulation mechanisms and applications of electrostimulation and micro-aeration strategies to accelerate the biotransformation of RONCs to organic amine (amination) and inorganic ammonia (ammonification), respectively. Furthermore, a promising approach involving in-situ hybrid anaerobic biological units, coupled with electrostimulation and micro-aeration, is proposed towards engineering applications. Finally, employing cutting-edge methods including multi-omics analysis, data science driven machine learning, technology-economic analysis, and life-cycle assessment would contribute to optimizing the process design and engineering implementation. This review offers a fundamental understanding and inspiration for novel research in the enhanced biotechnology towards RONCs elimination.


Sujet(s)
Azote , Oxydoréduction , Eaux usées , Eaux usées/composition chimique , Élimination des déchets liquides/méthodes , Polluants chimiques de l'eau/métabolisme
3.
BMC Complement Med Ther ; 24(1): 174, 2024 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-38664638

RÉSUMÉ

Liver cancer is a common malignant tumor worldwide, traditional Chinese medicine is one of the treatment measures for liver cancer because of its good anti-tumor effects and fewer toxic side effects. Ginsenoside CK (CK) is an active component of ginseng. This study explored the mechanism by which CK induced ferroptosis in liver cancer cells. We found that CK inhibited the proliferation of HepG2 and SK-Hep-1 cells, induced ferroptosis of cells. Ferrostatin-1, an ferroptosis inhibitor, was used to verify the role of CK in inducing ferroptosis of liver cancer cells. Network pharmacological analysis identified the FOXO pathway as a potential mechanism of CK, and western blot showed that CK inhibited p-FOXO1. In cells treated with the FOXO1 inhibitor AS1842856, further verify the involvement of the FOXO pathway in regulating CK-induced ferroptosis in HepG2 and SK-Hep-1 cells. A HepG2 cell-transplanted tumor model was established in nude mice, and CK inhibited the growth of transplanted tumors in nude mice, p-FOXO1 was decreased in tumor tissues, and SLC7A11 and GPX4 expressions were also down-regulated after CK treatment. These findings suggested that CK induces ferroptosis in liver cancer cells by inhibiting FOXO1 phosphorylation and activating the FOXO signaling pathway, thus playing an antitumor role.


Sujet(s)
Ferroptose , Ginsénosides , Tumeurs du foie , Souris nude , Transduction du signal , Ferroptose/effets des médicaments et des substances chimiques , Ginsénosides/pharmacologie , Humains , Animaux , Souris , Tumeurs du foie/traitement médicamenteux , Transduction du signal/effets des médicaments et des substances chimiques , Cellules HepG2 , Souris de lignée BALB C , Protéine O1 à motif en tête de fourche/métabolisme , Lignée cellulaire tumorale
4.
Water Res ; 254: 121391, 2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-38452528

RÉSUMÉ

Elemental sulfur-based denitrification (ESDeN) technology is known as a cost-saving alternative to its heterotrophic counterpart for nutrient removal from organic-deficient water. However, the traditional fixed-bed reactor (FixBR), as an extensively used process, suffers from a low denitrification rate and even performance deterioration during long-term operation. Herein, we proposed a novel elemental sulfur-based denitrifying moving-bed reactor (ESDeN-MovBR), in which a screw rotator was employed to drive the filled sulfur particles to be microfluidized vertically (a state of vertical-loop movement). Our results showed that the ESDeN-MovBR realized much superior and more stable denitrification performance compared to the ESDeN-FixBR, as indicated by 3.09-fold higher denitrification rate and over one order of magnitude lower intermediates (NO2- and N2O) yield, which could last for over 100 days. Further research revealed that the microfluidization of sulfur particles facilitated the expelling of nitrogen bubbles and excessive biomass, resulting in the prolongation of actual hydraulic retention time by over 80 % and could partially explain the higher denitrification rate in ESDeN-MovBR. The remaining contribution to the improvement of denitrification rate was suggested to be result from changes in biofilm properties, in which the biofilm thickness of ESDeN-MovBR was found to be 3.29 times thinner yet enriched with 2.52 times more autotrophic denitrifiers. This study offered a completely new solution to boost up the denitrification performance of ESDeN technology and provided in-depth evidence for the necessity of biofilm thickness control in such technology.


Sujet(s)
Bioréacteurs , Dénitrification , Soufre , Processus autotrophes , Azote , Nitrates
5.
Environ Sci Technol ; 58(9): 4193-4203, 2024 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-38393778

RÉSUMÉ

Sulfur disproportionation (S0DP) poses a challenge to the robust application of sulfur autotrophic denitrification due to unpredictable sulfide production, which risks the safety of downstream ecosystems. This study explored the S0DP occurrence boundaries with nitrate loading and temperature effects. The boundary values increased with the increase in temperature, exhibiting below 0.15 and 0.53 kg-N/m3/d of nitrate loading at 20 and 30 °C, respectively. A pilot-scale sulfur-siderite packed bioreactor (150 m3/d treatment capacity) was optimally designed with multiple subunits to dynamically distribute the loading of sulfur-heterologous electron acceptors. Operating two active and one standby subunit achieved an effective denitrification rate of 0.31 kg-N/m3/d at 20 °C. For the standby subunit, involving oxygen by aeration effectively transformed the facultative S0DP functional community from S0DP metabolism to aerobic respiration, but with enormous sulfur consumption resulting in ongoing sulfate production of over 3000 mg/L. Meanwhile, acidification by the sulfur oxidation process could reduce the pH to as low as 2.5, which evaluated the Gibbs free energy (ΔG) of the S0DP reaction to +2.56 kJ, thermodynamically suppressing the S0DP occurrence. Therefore, a multisubunit design along with S0DP inhibition strategies of short-term aeration and long-term acidification is suggested for managing S0DP in various practical sulfur-packed bioreactors.


Sujet(s)
Carbonates , Écosystème , Composés du fer III , Nitrates , Nitrates/métabolisme , Processus autotrophes , Température , Soufre/métabolisme , Bioréacteurs , Dénitrification , Azote
6.
Bioresour Technol ; 397: 130482, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38403169

RÉSUMÉ

This study conducted an analysis of the variations in nitrogen metabolism pathways within constructed wetlands (CWs) using zeolite (CW-Z), ceramsite (CW-C), and lava (CW-L) under high concentration sulfamethoxazole (SMX) stress. The introduction of SMX hindered the formation of hydrogen bonds on the substrate surfaces; however, these surfaces still maintained a dense and thick biofilm. CW-Z exhibited superior removal efficiencies for ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) compared to CW-C and CW-L, with removal rates of 92.54 ± 2.88 % and 89.39 ± 6.74 %, respectively. Interestingly, the proportion of genes involved in nitrification, denitrification and nitrate reduction genes in CW-C (36.05 %) were higher than that in CW-C (29.81 %) and CW-L (29.70 %) but the interactions among nitrogen functional bacteria in CW-Z were much more complex. Further analysis of the nitrogen metabolism pathway indicated that under CW-Z enhanced dissimilatory nitrate reduction SMX stress, while CW-L enhanced assimilatory nitrate reduction process compared to CW-C.


Sujet(s)
Élimination des déchets liquides , Eaux usées , Dénitrification , Nitrates/analyse , Sulfaméthoxazole , Zones humides , Composés chimiques organiques , Azote/analyse
7.
Appl Microbiol Biotechnol ; 108(1): 120, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-38212963

RÉSUMÉ

UV photolysis has been recommended as an alternative pretreatment method for the elimination of antibacterial activity of antibiotics against the indicator strain, but the pretreated antibiotic intermediates might not lose their potential to induce antibiotic resistance genes (ARGs) proliferation during subsequent biotreatment processes. The presence of florfenicol (FLO) in wastewater seriously inhibits the metabolic performance of anaerobic sludge microorganisms, especially the positive correlation between UV irradiation doses and ATP content, while it did not significantly affect the organics utilization ability and protein biosynthetic process of aerobic microorganisms. After sufficient UV pretreatment, the relative abundances of floR from genomic or plasmid DNA in subsequent aerobic and anaerobic biotreatment processes both decreased by two orders of magnitude, maintained at the level of the groups without FLO selective pressure. Meanwhile, the abundances of floR under anaerobic condition were always lower than that under aerobic condition, suggesting that anaerobic biotreatment systems might be more suitable for the effective control of target ARGs. The higher abundance of floR in plasmid DNA than in genome also indicated that the potential transmission risk of mobile ARGs should not be ignored. In addition, the relative abundance of intI1 was positively correlated with floR in its corresponding genomic or plasmid DNA (p < 0.05), which also increased the potential horizontal transfer risk of target ARGs. This study provides new insights into the effect of preferential UV photolysis as a pretreatment method for the enhancement of metabolic performance and source control of target ARGs in subsequent biotreatment processes. KEY POINTS: • Sufficient UV photolytic pretreatment efficiently controlled the abundance of floR • A synchronous decrease in abundance of intI1 reduced the risk of horizontal transfer • An appreciable abundance of floR in plasmid DNA was a potential source of total ARGs.


Sujet(s)
Gènes bactériens , Thiamphénicol/analogues et dérivés , Eaux usées , Antibactériens/pharmacologie , ADN
8.
Water Res ; 251: 121143, 2024 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-38277824

RÉSUMÉ

Microbial reduction under anaerobic condition is a promising method for remediating vanadate [V(V)] contamination in aquifers, while V(V) may be re-generated with redox fluctuations. The inability to remove vanadium after remediation has become a key issue limiting bioremediation. In this study, we proposed the use of pyrrhotite, a natural mineral with magnetic properties, to immobilize V(V) to insoluble V(IV) under microbial action and remove vanadium from the aquifer using a magnetic field, which could avoid the problem of V(V) recontamination under redox fluctuating conditions. Up to 49.0 ± 4.7 % of vanadium could be removed from the aquifer by the applied magnetic field, and the vanadium in the aquifer after the reaction was mainly in the acid-extractable and reducible states. pH had a strong effect on the magnetic recovery of V(V), while the influence of initial V(V) concentration was weak. Microbial community structure analysis showed that Thiobacillus, Proteiniphilum, Fermentimonas, and Desulfurivibrio played key roles for V(V) reduction and pyrrhotite oxidation. Structural equation model indicated the positive correlation between these genera with the magnetic recovery of vanadium. Real time-qPCR confirmed the roles of functional genes of V(V) reduction (napA and nirK) and SO42- reduction (dsrA) in such biological processes. This study provides a novel route to sustainable V(V) remediation in aquifers, with synchronous recovery of vanadium resources without rebound.


Sujet(s)
Nappe phréatique , Vanadium , Vanadium/analyse , Oxydoréduction , Nappe phréatique/composition chimique , Dépollution biologique de l'environnement , Phénomènes magnétiques
9.
Bioresour Technol ; 393: 130081, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37993067

RÉSUMÉ

The sulfur fluidizing bioreactor (S0FB) has significant superiorities in treating nitrate-rich wastewater. However, substantial self-acidification has been observed in engineering applications, resulting in frequent start-up failures. In this study, self-acidification was reproduced in a lab-scale S0FB. It was demonstrated that self-acidification was mainly induced by sulfur disproportionation process, accounting for 93.4 % of proton generation. Supplying sufficient alkalinity to both the influent (3000 mg/L) and the bulk (2000 mg/L) of S0FB was essential for achieving a successful start-up. Furthermore, the S0FB reached 10.3 kg-N/m3/d of nitrogen removal rate and 0.13 kg-PO43-/m3/d of phosphate removal rate, respectively, surpassing those of the documented sulfur packing bioreactors by 7-129 times and 26-65 times. This study offers a feasible and practical method to avoid self-acidification during restart of S0FB and highlights the considerable potential of S0FB in the treatment of nitrate-rich wastewater.


Sujet(s)
Nitrates , Eaux usées , Processus autotrophes , Dénitrification , Soufre , Bioréacteurs , Concentration en ions d'hydrogène , Azote
10.
Environ Sci Technol ; 57(43): 16522-16531, 2023 10 31.
Article de Anglais | MEDLINE | ID: mdl-37844031

RÉSUMÉ

Reactive fillers consisting of reduced sulfur and iron species (SFe-ReFs) have received increasing attention in tertiary wastewater treatment for nitrate and phosphate coremoval. However, the existing SFe-ReFs suffer from either low performance (e.g., pyrrhotite and pyrite) or unsatisfactory use in terms of combustible risk and residual nonreactive impurities (e.g., sulfur mixing with natural iron ores). Here, we developed a new type of sulfur-siderite composite ReF (SSCReF) with a structure of natural siderite powders eventually embedded into sulfur. SSCReFs exhibited many excellent properties, including higher mechanical strengths and hardness and especially much poorer ignitability compared to pure sulfur. By using SSCReF to construct packed-bed reactors, the highest denitrification and dephosphorization rates reached 829.70 gN/m3/d (25 wt % siderite) and 36.70 gP/m3/d (75 wt % siderite), respectively. Dephosphorization was demonstrated to be dependent on sulfur-driven denitrification, in which the acid produced from the later process promoted Fe(II) dissolution, which then directly combined with phosphate to form vivianite or further converted into phosphate adsorbents (ferrihydrite, a green rust-like compound). Water flush was an effective way to finally wash out these surface deposited Fe-P compounds, as well as those nonreactive impurities (Si and Al-bearing compounds) detached from SSCReF. Such a highly efficient and safe SSCReF holds considerable application potential in secondary effluent polishing.


Sujet(s)
Dénitrification , Nitrates , Bioréacteurs , Soufre , Fer , Phosphates , Azote , Processus autotrophes
11.
Water Res ; 243: 120356, 2023 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-37516076

RÉSUMÉ

Elemental sulfur packed-bed (S0PB) bioreactors for autotrophic denitrification have gained more attention in wastewater treatment due to their organic carbon-free operation, low operating cost, and minimal carbon emissions. However, the rapid development of microbial S0-disproportionation (MS0D) in S0PB reactor during deep denitrification poses a significant drawback to this new technology. MS0D, the process in which sulfur is used as both an electron donor and acceptor by bacteria, plays a crucial role in the microbial-driven sulfur cycle but remains poorly understood in wastewater treatment setups. In this study, we induced MS0D in a pilot-scale S0PB reactor capable of denitrifying over 1000 m3/d nitrate-containing wastewater. Initially, the S0PB reactor stably removed 6.6 mg-NO3--N/L nitrate at an empty bed contact time (EBCT) of 20 mins, which was designated the S0-denitrification stage. To induce MS0D, we reduced the influent nitrate concentrations to allow deep nitrate removal, resulted in the production of large quantities of sulfate and sulfide (SO42-:S2- 3.2 w/w). Meanwhile, other sulfur-heterologous electron acceptors (SHEAs), e.g., nitrite and DO, were also kept at trace levels. The negative correlations between the SHEAs concentrations and the sulfide productions indicated that the absence of SHEAs was a primary inducing factor to MS0D. The microbial community drastically diverged in response to the depletion of SHEAs during the switch from S0-denitrification to S0-disproportionation. An evident enrichment of sulfur-disproportionating bacteria (SDBs) was found at the S0-disproportionation stage, accompanied by the decline of sulfur-oxidizing bacteria (SOBs). In the end, we discovered that shortening the EBCT and increasing the reflux ratio could inhibit sulfide production by reducing it from 43.9 mg/L to 3.2 mg/L or 25.5 mg/L. In conclusion, our study highlights the importance of considering MS0D when designing and optimizing S0PB reactors for sustainable autotrophic sulfur denitrification in real-life applications.


Sujet(s)
Dénitrification , Nitrates , Processus autotrophes , Soufre , Bioréacteurs/microbiologie , Bactéries , Sulfures , Azote
12.
Environ Pollut ; 334: 122081, 2023 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-37414118

RÉSUMÉ

The coexistence of antibiotics and heavy metals in agroecosystems is nonnegligible, which permits the promotion of antibiotic resistance genes (ARGs) in crops, thus posing a potential threat to humans along the food chain. In this study, we investigated the bottom-up (rhizosphere→rhizome→root→leaf) long-distance responses and bio-enrichment characteristics of ginger to different sulfamethoxazole (SMX) and chromium (Cr) contamination patterns. The results showed that ginger root systems adapted to SMX- and/or Cr-stress by increasing humic-like exudates, which may help to maintain the rhizosphere indigenous bacterial phyla (i.e., Proteobacteria, Chloroflexi, Acidobacteria and Actinobacteria). The root activity, leaf photosynthesis and fluorescence, and antioxidant enzymes (SOD, POD, CAT) of ginger were significantly decreased under high-dose Cr and SMX co-contamination, while a "hormesis effect" was observed under single low-dose SMX contamination. For example, CS100 (co-contamination of 100 mg/L SMX and 100 mg/L Cr) caused the most severe inhibition to leaf photosynthetic function by reducing photochemical efficiency (reflected on PAR-ETR, φPSII and qP). Meanwhile, CS100 induced the highest ROS production, in which H2O2 and O2·- increased by 328.82% and 238.00% compared with CK (the blank control without contamination). Moreover, co-selective stress by Cr and SMX induced the increase of ARG bacterial hosts and bacterial phenotypes containing mobile elements, contributing to the high detected abundance of target ARGs (sul1, sul2) up to 10-2∼10-1 copies/16S rRNA in rhizomes intended for consumption.


Sujet(s)
Antibactériens , Zingiber officinale , Humains , Antibactériens/pharmacologie , Sulfaméthoxazole , Zingiber officinale/génétique , Sol , Chrome/toxicité , ARN ribosomique 16S , Peroxyde d'hydrogène , Bactéries/génétique , Gènes bactériens , Résistance microbienne aux médicaments/génétique
13.
Environ Res ; 231(Pt 1): 116061, 2023 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-37149027

RÉSUMÉ

Dosing sulfide into the sulfur-packed-bed (S0PB) has great potential to enhance the denitrification efficiency by providing compensatory electron donors, however, the response of sulfur-metabolizing biofilm to various sulfide dosages has never been investigated. In this study, the S0PB reactor was carried out with increasing sulfide dosages by 3.6 kg/m3/d, presenting a decreasing effluent nitrate from 14.2 to 2.7 mg N/L with accelerated denitrification efficiency (k: 0.04 to 0.27). However, 6.5 mg N/L of nitrite accumulated when the sulfide dosage exceeded 0.9 kg/m3/d (optimum value). The increasing electron export contribution of sulfide a maximum of 85.5% illustrated its competition with the in-situ sulfur. Meanwhile, over-dosing sulfide caused serious biofilm expulsion with significant decreases in the total biomass, live cell population, and ATP by 90.2%, 86.7%, and 54.8%, respectively. This study verified the capacity of dosing sulfide to improve the denitrification efficiency in S0PB but alerted the negative effect of exceeded dosing.


Sujet(s)
Bioréacteurs , Dénitrification , Sulfures , Soufre , Biofilms
14.
Environ Res ; 231(Pt 1): 116047, 2023 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-37149031

RÉSUMÉ

In recent years, biological sulfur (bio-S) was employed in sulfur autotrophic denitrification (SAD) in which autotrophic Thiobacillus denitrificans and heterotrophic Stenotrophomonas maltophilia played a key role. The growth pattern of T.denitrificans and S.maltophilia exhibited a linear relationship between OD600 and CFU when OD600 < 0.06 and <0.1, respectively. When S.maltophilia has applied alone, the NorBC and NosZ were undetected, and denitrification was incomplete. The DsrA of S.maltophilia could produce sulfide as an alternative electron donor for T.denitrificans. Even though T.denitrificans had complete denitrification genes, its efficiency was low when used alone. The interaction of T.denitrificans and S.maltophilia reduced nitrite accumulation, leading to complete denitrification. A sufficient quantity of S.maltophilia may trigger the autotrophic denitrification activity of T.denitrificans. When the colony-forming units (CFU) ratio of S.maltophilia to T.denitrificans was reached at 2:1, the highest denitrification performance was achieved at 2.56 and 12.59 times higher than applied alone. This research provides a good understanding of the optimal microbial matching for the future application of bio-S.


Sujet(s)
Dénitrification , Électrons , Soufre , Processus autotrophes , Sulfures , Bioréacteurs , Azote
15.
J Hazard Mater ; 448: 130943, 2023 04 15.
Article de Anglais | MEDLINE | ID: mdl-36860074

RÉSUMÉ

Improvement of refractory nitrogen-containing organics biodegradation is crucial to meet discharged nitrogen standards and guarantee aquatic ecology safety. Although electrostimulation accelerates organic nitrogen pollutants amination, it remains uncertain how to strengthen ammonification of the amination products. This study demonstrated that ammonification was remarkably facilitated under micro-aerobic conditions through the degradation of aniline, an amination product of nitrobenzene, using an electrogenic respiration system. The microbial catabolism and ammonification were significantly enhanced by exposing the bioanode to air. Based on 16S rRNA gene sequencing and GeoChip analysis, our results indicated that aerobic aniline degraders and electroactive bacteria were enriched in suspension and inner electrode biofilm, respectively. The suspension community had a significantly higher relative abundance of catechol dioxygenase genes contributing to aerobic aniline biodegradation and reactive oxygen species (ROS) scavenger genes to protect from oxygen toxicity. The inner biofilm community contained obviously higher cytochrome c genes responsible for extracellular electron transfer. Additionally, network analysis indicated the aniline degraders were positively associated with electroactive bacteria and could be the potential hosts for genes encoding for dioxygenase and cytochrome, respectively. This study provides a feasible strategy to enhance nitrogen-containing organics ammonification and offers new insights into the microbial interaction mechanisms of micro-aeration assisted with electrogenic respiration.


Sujet(s)
Dioxygenases , Eaux usées , ARN ribosomique 16S , Amines , Dérivés de l'aniline , Respiration , Cycle de l'azote
16.
Bioresour Technol ; 367: 128238, 2023 Jan.
Article de Anglais | MEDLINE | ID: mdl-36334869

RÉSUMÉ

The effect of particle morphology on denitrification performance in element sulfur-based denitrification (ESDeN) packed-bed process is a gap. In this study, three different types of commercial sulfur particles were selected to build the ESDeN reactors. The results showed the reactors filled with rougher sulfur particles took shorter time to reach stable denitrification performance in the start-up stage. The reactors filled with cap-shape sulfur particles received the maximum nitrate removal rate of 849.49 ± 79.29 g N m-3 d-1 at empty bed contact time of 0.50 h, which was 2.34 times higher than that with ball-shape sulfur particles in the steady stage. The superior denitrification performance in the cap-shape particles set linked to its larger effective volumetric surface area (ωe, 1.67 times larger) and to the longer actual hydraulic retention time (AHRT, 1.80 times longer). This study extends the knowledge of the dependency of sulfur particle properties on denitrification performance in ESDeN packed-bed reactor.


Sujet(s)
Bioréacteurs , Dénitrification , Soufre , Nitrates , Processus autotrophes , Azote
17.
Water Res ; 226: 119258, 2022 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-36272196

RÉSUMÉ

Constructed wetlands (CWs) integrated with sulfur autotrophic denitrification to stimulate high-rate nitrogen removal from carbon-limited wastewater holds particular application prospect due to no excessive carbon source addition, high efficiency, and good stability. In this study, we conducted elemental sulfur-based constructed wetland (SCW) and traditional constructed wetland (CW) under different C/N (2, 1, and 0.5) to explore the feasibility and mechanisms for nitrogen removal from low C/N wastewater. Compared with CW, SCW was demonstrated more robust in nitrogen removal in the case of low C/N influent. When the influent C/N control was at 0.5, SCW observed total nitrogen (TN) and nitrate removal efficiency of 69.36 ± 3.96% and 81.71 ± 3.96%, with the corresponding removal rate of 1.18 ± 0.66 and 1.70 ± 0.92 g-N·m-2·d-1, which were 2.11 and 10.03 times of CW, respectively. The nitrate removal rate constant k in the SCW was 1.05, 3.83, and 10.33 times higher than the CW with C/N of 2, 1 and 0.5. Furthermore, 14.40, 54.51, and 79.82% of nitrogen were removed by the sulfur autotrophic denitrification (SAD) in SCW, which also contributed 43.89, 73.68, and 71.70% of sulfate production. Moreover, the combined system of CW-SCW is proved be an efficient operation mode for simultaneously removing total ammonia nitrogen (TAN) and nitrate. In the SCW, the richness of the microbial community was improved and sulfur-oxidizing genera (e.g. Thiobacillus, Sulfurimonas) was selectively enriched, which affect the performance the elemental sulfur-based denitrification process. The nitrate reduction pathway was overwhelmed by denitrification and the dissimilatory nitrate reduction process. These findings offer elemental sulfur-based autotrophic denitrification constructed wetland has excellent potential to enhance nitrogen removal from carbon-limited wastewater.


Sujet(s)
Eaux usées , Zones humides , Dénitrification , Azote/analyse , Nitrates , Bioréacteurs , Processus autotrophes , Soufre , Carbone
18.
Environ Sci Ecotechnol ; 11: 100186, 2022 Jul.
Article de Anglais | MEDLINE | ID: mdl-36158760

RÉSUMÉ

Traditional bioelectrochemical systems (BESs) coupled with stripping units for ammonia recovery suffer from an insufficient supply of electron acceptors due to the low solubility of oxygen. In this study, we proposed a novel strategy to efficiently transport the oxidizing equivalent provided at the stripping unit to the cathode by introducing a highly soluble electron mediator (EM) into the catholyte. To validate this strategy, we developed a new kind of iron complex system (tartrate-EDTA-Fe) as the EM. EDTA-Fe contributed to the redox property with a midpoint potential of -0.075 V (vs. standard hydrogen electrode, SHE) at pH 10, whereas tartrate acted as a stabilizer to avoid iron precipitation under alkaline conditions. At a ratio of the catholyte recirculation rate to the anolyte flow rate (RC-A) of 12, the NH4 +-N recovery rate in the system with 50 mM tartrate-EDTA-Fe complex reached 6.9 ±â€¯0.2 g N m-2 d-1, approximately 3.8 times higher than that in the non-EM control. With the help of the complex, our system showed an NH4 +-N recovery performance comparable to that previously reported but with an extremely low RC-A (0.5 vs. 288). The strategy proposed here may guide the future of ammonia recovery BES scale-up because the introduction of an EM allows aeration to be performed only at the stripping unit instead of at every cathode, which is beneficial for the system design due to its simplicity and reliability.

19.
Environ Res ; 215(Pt 2): 114348, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36155154

RÉSUMÉ

Nitrate pollution is an important cause of eutrophication and ecological disruption. Recently, element sulfur-based denitrification (ESDeN) has attracted increasing attention because of its non-carbon source dependence, low sludge yield, and cost-effectiveness. Although the denitrification performance of sulfur autotrophic denitrifying bacteria at different temperatures has been widely studied, there are still many unknown factors about the adaptability and the shaping of microbial community. In this study, we comprehensively understood the shaping of ESDeN microbial communities under different temperature conditions. Results revealed that microbial communities cultivated at temperatures ranging from 10 °C to 35 °C could be classified as high-temperature (35 °C), middle-temperature (30, 25 and 20 °C), and low-temperature (15 and 10 °C) communities. Dissolved oxygen in water was an important factor that, in combination with temperature, shaped microbial community structure. According to network analysis, the composition of keystone taxa was different for the three groups of communities. Some bacteria that did not have sulfur compound oxidation function were identified as the "keystone species". The abundances of carbon, nitrogen, and sulfur metabolism of the three microbial communities were significantly changed, which was reflected in that the high-temperature and middle-temperature communities were dominated by dark oxidation of sulfur compounds and dark sulfide oxidation, while the low-temperature community was dominated by chemoheterotrophy and aerobic chemoheterotrophy. The fact that the number of microorganisms with dark oxidation of sulfur compounds capacity was quite higher than that of microorganisms with dark sulfur oxidation capacity suggested that the sulfur bioavailability at different temperatures, especially low temperature, was the main challenge for the development of efficient ESDeN process. This study provided a biological basis for developing a high-efficiency ESDeN process to cope with temperature changes in different seasons or regions.


Sujet(s)
Dénitrification , Microbiote , Bactéries , Bioréacteurs/microbiologie , Nitrates/composition chimique , Azote/métabolisme , Oxygène/métabolisme , Eaux d'égout/microbiologie , Sulfures , Soufre/composition chimique , Soufre/métabolisme , Composés du soufre/métabolisme , Température , Eau
20.
Water Res ; 220: 118675, 2022 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-35635922

RÉSUMÉ

Elemental sulfur (S0)-based autotrophic denitrification (SAD) has gained intensive attention in the treatment of secondary effluent for its low cost, high efficiency, and good stability. However, in practice, the supplementary addition of limestone is necessary to balance the alkalinity consumption during SAD operation, which increases water hardness and reduces the effective reaction volume. In this study, a coupled sulfur and electrode-driven autotrophic denitrification (SEAD) process was proposed with superior nitrate removal performance, less accumulation of sulfate, and self-balance of acidity-alkalinity capacity by regulating the applied voltage. The dual-channel electron supply from S0 and electrodes made the nitrate removal rate constant k in the SEAD process 3.7-5.1 and 1.4-3.5 times higher than that of the single electrode- and sulfur-driven systems, respectively. The S° contributed to 75.3%-83.1% of nitrate removal and the sulfate yield during SEAD (5.67-6.26 mg SO42-/mg NO3--N) was decreased by 17%-25% compared with SAD. The S0 particle and electrode both as active bio-carriers constructed collaborative denitrification communities and functional genes. Pseudomonas, Ralstonia and Brevundimonas were the dominant denitrifying genera in S0 particle biofilm, while Pseudomonas, Chryseobacterium, Pantoea and Comamonas became dominant denitrifying genera in the cathode biofilm. The narG/Z/H/Y/I/V, nxrA/B, napA/B, nirS/K, norB/C and nosZ were potential functional genes for efficient nitrate reduction during the SEAD process. Metagenomic sequencing indicated that S0 as an electron donor has greater potential for complete denitrification than the electrode. These findings revealed the potential of SEAD for acting as a highly efficient post denitrification process.


Sujet(s)
Dénitrification , Nitrates , Processus autotrophes , Bioréacteurs/microbiologie , Électrodes , Azote , Oxydes d'azote , Sulfates , Soufre
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...