Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Plant Cell ; 33(10): 3348-3366, 2021 10 11.
Article de Anglais | MEDLINE | ID: mdl-34323976

RÉSUMÉ

Carbohydrate partitioning from leaves to sink tissues is essential for plant growth and development. The maize (Zea mays) recessive carbohydrate partitioning defective28 (cpd28) and cpd47 mutants exhibit leaf chlorosis and accumulation of starch and soluble sugars. Transport studies with 14C-sucrose (Suc) found drastically decreased export from mature leaves in cpd28 and cpd47 mutants relative to wild-type siblings. Consistent with decreased Suc export, cpd28 mutants exhibited decreased phloem pressure in mature leaves, and altered phloem cell wall ultrastructure in immature and mature leaves. We identified the causative mutations in the Brittle Stalk2-Like3 (Bk2L3) gene, a member of the COBRA family, which is involved in cell wall development across angiosperms. None of the previously characterized COBRA genes are reported to affect carbohydrate export. Consistent with other characterized COBRA members, the BK2L3 protein localized to the plasma membrane, and the mutants condition a dwarf phenotype in dark-grown shoots and primary roots, as well as the loss of anisotropic cell elongation in the root elongation zone. Likewise, both mutants exhibit a significant cellulose deficiency in mature leaves. Therefore, Bk2L3 functions in tissue growth and cell wall development, and this work elucidates a unique connection between cellulose deposition in the phloem and whole-plant carbohydrate partitioning.


Sujet(s)
Métabolisme glucidique , Paroi cellulaire/métabolisme , Protéines végétales/génétique , Zea mays/génétique , Protéines végétales/métabolisme , Zea mays/métabolisme
2.
Mol Plant ; 12(9): 1278-1293, 2019 09 02.
Article de Anglais | MEDLINE | ID: mdl-31102785

RÉSUMÉ

To sustain plant growth, development, and crop yield, sucrose must be transported from leaves to distant parts of the plant, such as seeds and roots. To identify genes that regulate sucrose accumulation and transport in maize (Zea mays), we isolated carbohydrate partitioning defective33 (cpd33), a recessive mutant that accumulated excess starch and soluble sugars in mature leaves. The cpd33 mutants also exhibited chlorosis in the leaf blades, greatly diminished plant growth, and reduced fertility. Cpd33 encodes a protein containing multiple C2 domains and transmembrane regions. Subcellular localization experiments showed the CPD33 protein localized to plasmodesmata (PD), the plasma membrane, and the endoplasmic reticulum. We also found that a loss-of-function mutant of the CPD33 homolog in Arabidopsis, QUIRKY, had a similar carbohydrate hyperaccumulation phenotype. Radioactively labeled sucrose transport assays showed that sucrose export was significantly lower in cpd33 mutant leaves relative to wild-type leaves. However, PD transport in the adaxial-abaxial direction was unaffected in cpd33 mutant leaves. Intriguingly, transmission electron microscopy revealed fewer PD at the companion cell-sieve element interface in mutant phloem tissue, providing a possible explanation for the reduced sucrose export in mutant leaves. Collectively, our results suggest that CPD33 functions to promote symplastic transport into sieve elements.


Sujet(s)
Feuilles de plante/métabolisme , Saccharose/métabolisme , Zea mays/métabolisme , Transport biologique/génétique , Transport biologique/physiologie , Régulation de l'expression des gènes végétaux/génétique , Régulation de l'expression des gènes végétaux/physiologie , Phloème/métabolisme , Plasmodesmes/métabolisme
3.
Nat Genet ; 50(9): 1282-1288, 2018 09.
Article de Anglais | MEDLINE | ID: mdl-30061736

RÉSUMÉ

The maize W22 inbred has served as a platform for maize genetics since the mid twentieth century. To streamline maize genome analyses, we have sequenced and de novo assembled a W22 reference genome using short-read sequencing technologies. We show that significant structural heterogeneity exists in comparison to the B73 reference genome at multiple scales, from transposon composition and copy number variation to single-nucleotide polymorphisms. The generation of this reference genome enables accurate placement of thousands of Mutator (Mu) and Dissociation (Ds) transposable element insertions for reverse and forward genetics studies. Annotation of the genome has been achieved using RNA-seq analysis, differential nuclease sensitivity profiling and bisulfite sequencing to map open reading frames, open chromatin sites and DNA methylation profiles, respectively. Collectively, the resources developed here integrate W22 as a community reference genome for functional genomics and provide a foundation for the maize pan-genome.


Sujet(s)
Éléments transposables d'ADN/génétique , Gènes de plante/génétique , Génome végétal/génétique , Zea mays/génétique , Chromatine/génétique , Chromosomes de plante/génétique , Variations de nombre de copies de segment d'ADN/génétique , Méthylation de l'ADN/génétique , ADN des plantes/génétique , Génomique/méthodes , Cadres ouverts de lecture/génétique , Analyse de séquence d'ADN/méthodes
4.
Cell ; 170(6): 1049-1054, 2017 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-28886375

RÉSUMÉ

September 2, 2017, marks the 25th year after the passing of Dr. Barbara McClintock, geneticist and recipient of the 1983 Nobel Prize in Physiology or Medicine for her discovery of transposable elements in maize. This memoir focuses on the last years of her life-after the prize-and includes personal recollections of how she mentored young scientists and inspired the age of genetics, epigenetics, and genomics.


Sujet(s)
Éléments transposables d'ADN , Génétique/enseignement et éducation , Gènes de plante , Génétique/histoire , Histoire du 20ème siècle , Prix Nobel , Physiologie/histoire , Zea mays/génétique
5.
Genetics ; 169(2): 981-95, 2005 Feb.
Article de Anglais | MEDLINE | ID: mdl-15520264

RÉSUMÉ

A collection of Activator (Ac)-containing, near-isogenic W22 inbred lines has been generated for use in regional mutagenesis experiments. Each line is homozygous for a single, precisely positioned Ac element and the Ds reporter, r1-sc:m3. Through classical and molecular genetic techniques, 158 transposed Ac elements (tr-Acs) were distributed throughout the maize genome and 41 were precisely placed on the linkage map utilizing multiple recombinant inbred populations. Several PCR techniques were utilized to amplify DNA fragments flanking tr-Ac insertions up to 8 kb in length. Sequencing and database searches of flanking DNA revealed that the majority of insertions are in hypomethylated, low- or single-copy sequences, indicating an insertion site preference for genic sequences in the genome. However, a number of Ac transposition events were to highly repetitive sequences in the genome. We present evidence that suggests Ac expression is regulated by genomic context resulting in subtle variations in Ac-mediated excision patterns. These tr-Ac lines can be utilized to isolate genes with unknown function, to conduct fine-scale genetic mapping experiments, and to generate novel allelic diversity in applied breeding programs.


Sujet(s)
Éléments transposables d'ADN/génétique , Génome végétal , Mutagenèse par insertion , Zea mays/génétique , Cartographie chromosomique , Chromosomes de plante , Clonage moléculaire , ADN des plantes , Régulation de l'expression des gènes végétaux , Gènes de plante , Gènes rapporteurs , Techniques génétiques , Variation génétique , Homozygote , Données de séquences moléculaires , Réaction de polymérisation en chaîne , Séquences répétées d'acides nucléiques , Rétroéléments
6.
Plant Cell ; 15(4): 874-84, 2003 Apr.
Article de Anglais | MEDLINE | ID: mdl-12671084

RÉSUMÉ

The transposable elements Activator/Dissociation (Ac/Ds) were first discovered in maize, yet they have not been used extensively in their native host for gene-tagging experiments. This can be attributed largely to the low forward mutation rate and the propensity for closely linked transpositions associated with Ac and its nonautonomous deletion derivative Ds. To overcome these limitations, we are developing a series of nearly isogenic maize lines, each with a single active Ac element positioned at a well-defined location. These Ac elements are distributed at 10- to 20-centimorgan intervals throughout the genome for use in regional mutagenesis. Here, we demonstrate the utility of this Ac-based gene-tagging approach through the targeted mutagenesis of the pink scutellum1/viviparous7 (ps1/vp7) locus. Using a novel PCR-based technique, the Ps1 gene was cloned and Ac elements positioned precisely in each of the seven alleles recovered. The Ps1 gene is predicted to encode lycopene beta-cyclase and is necessary for the accumulation of both abscisic acid and the carotenoid zeaxanthin in mature maize embryos. This study demonstrates the utility of an Ac mutagenesis program to efficiently generate allelic diversity at closely linked loci in maize.


Sujet(s)
Lyases intramoléculaires/génétique , Mutagenèse par insertion/méthodes , Graines/génétique , Zea mays/génétique , Bêtacarotène/analogues et dérivés , Acide abscissique/métabolisme , Séquence d'acides aminés , Séquence nucléotidique , Caroténoïdes/métabolisme , Éléments transposables d'ADN/génétique , Lyases intramoléculaires/métabolisme , Données de séquences moléculaires , Protéines végétales/génétique , Protéines végétales/métabolisme , Graines/enzymologie , Similitude de séquences d'acides aminés , Xanthophylles , Zea mays/enzymologie , Zéaxanthines , Bêtacarotène/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...