Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 36
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Rep ; 14(1): 11106, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38750130

RÉSUMÉ

Transforming amines with low boiling points and high volatilities into protic salts is a versatile strategy to utilize low molecular weight compounds as precursors for N-doped carbon structures in a straightforward carbonization procedure. Herein, conventional mineral acids commonly used for the synthesis of protic salts were replaced by bio-derived phytic acid, which, combined with various amines and amino acids, yielded partially or fully bio-derived protic salts. The biomass-based salts showed higher char-forming ability than their mineral acid-based analogs (up to 55.9% at 800°), simultaneously providing carbon materials with significant porosity (up to 1177 m2g-1) and a considerable level of N,P,O-doping. Here, we present the first comprehensive study on the correlation between the structure of the bio-derived protic precursors and the properties of derived carbon materials to guide future designs of biomass-derived precursors for the one-step synthesis of sustainable carbon materials. Additionally, we demonstrate how to improve the textural properties of the protic-salt-derived carbons (which suffer from high brittleness) by simply upgrading them into highly flexible nanocomposites using high-quality single-walled carbon nanotubes. Consequently, self-standing electrodes for the oxygen reduction reaction were created.

2.
Chem Asian J ; 19(7): e202400006, 2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38433098

RÉSUMÉ

Tributyl citrate (TBC) plays a crucial role as a plasticizer, enhancing the flexibility of polymers such as polyvinyl chloride. Its biodegradability and non-toxic nature contribute to eco-friendly appeal, making it a preferred additive in diverse industries, including food packaging, medical devices, toys, and consumer goods. Herein, a method for the synthesis of TBC using inexpensive Brønsted acidic protic ionic liquids (ILs) in a two-phase reaction system is presented. The esterification process is carried out with high yield (>99 %), selectivity (up to 98 %) and short reaction time of 2 h. The catalyst in the form of IL shows excellent performance and stability, desirable for industrial applications.

3.
Environ Res ; 241: 117579, 2024 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-37944691

RÉSUMÉ

A wide array of organic compounds have been recognized as pollutants of high concern due to their controlled or uncontrolled presence in environmental matrices. The persistent prevalence of diverse organic pollutants, including pharmaceutical compounds, phenolic compounds, synthetic dyes, and other hazardous substances, necessitates robust measures for their practical and sustainable removal from water bodies. Several bioremediation and biodegradation methods have been invented and deployed, with a wide range of materials well-suited for diverse environments. Enzyme-linked carbon-based materials have been considered efficient biocatalytic platforms for the remediation of complex organic pollutants, mostly showing over 80% removal efficiency of micropollutants. The advantages of enzyme-linked carbon nanotubes (CNTs) in enzyme immobilization and improved catalytic potential may thus be advantageous for environmental research considering the current need for pollutant removal. This review outlines the perspective of current remediation approaches and highlights the advantageous features of enzyme-linked CNTs in the removal of pollutants, emphasizing their reusability and stability aspects. Furthermore, different applications of enzyme-linked CNTs in environmental research with concluding remarks and future outlooks have been highlighted. Enzyme-linked CNTs serve as a robust biocatalytic platform for the sustainability agenda with the aim of keeping the environment clean and safe from a variety of organic pollutants.


Sujet(s)
Polluants environnementaux , Nanotubes de carbone , Polluants environnementaux/métabolisme , Dépollution biologique de l'environnement , Catalyse , Produits dangereux
4.
ACS Appl Mater Interfaces ; 15(39): 45701-45712, 2023 Oct 04.
Article de Anglais | MEDLINE | ID: mdl-37737728

RÉSUMÉ

Electrical stimulation has been used successfully for several decades for the treatment of neurodegenerative disorders, including motor disorders, pain, and psychiatric disorders. These technologies typically rely on the modulation of neural activity through the focused delivery of electrical pulses. Recent research, however, has shown that electrically triggered neuromodulation can be further enhanced when coupled with optical stimulation, an approach that can benefit from the development of novel electrode materials that combine transparency with excellent electrochemical and biological performance. In this study, we describe an electrochemically modified, nanostructured indium tin oxide/poly(ethylene terephthalate) (ITO/PET) surface as a flexible, transparent, and cytocompatible electrode material. Electrochemical oxidation and reduction of ITO/PET electrodes in the presence of an ionic liquid based on d-glucopyranoside and bistriflamide units were performed, and the electrochemical behavior, conductivity, capacitance, charge transport processes, surface morphology, optical properties, and cytocompatibility were assessed in vitro. It has been shown that under selected conditions, electrochemically modified ITO/PET films remained transparent and highly conductive and were able to enhance neural cell survival and neurite outgrowth. Consequently, electrochemical modification of ITO/PET electrodes in the presence of an ionic liquid is introduced as an effective approach for tailoring the properties of ITO for advanced bio-optoelectronic applications.


Sujet(s)
Liquides ioniques , Nanostructures , Humains , Oxydoréduction , Composés de l'étain/composition chimique
5.
Materials (Basel) ; 16(5)2023 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-36903221

RÉSUMÉ

Heterogeneous catalysis, although known for over a century, is constantly improved and plays a key role in solving the present problems in chemical technology. Thanks to the development of modern materials engineering, solid supports for catalytic phases having a highly developed surface are available. Recently, continuous-flow synthesis started to be a key technology in the synthesis of high added value chemicals. These processes are more efficient, sustainable, safer and cheaper to operate. The most promising is the use of heterogeneous catalyst with column-type fixed-bed reactors. The advantages of the use of heterogeneous catalyst in continuous flow reactors are the physical separation of product and catalyst, as well as the reduction in inactivation and loss of the catalyst. However, the state-of-the-art use of heterogeneous catalysts in flow systems compared to homogenous ones remains still open. The lifetime of heterogeneous catalysts remains a significant hurdle to realise sustainable flow synthesis. The goal of this review article was to present a state of knowledge concerning the application of Supported Ionic Liquid Phase (SILP) catalysts dedicated for continuous flow synthesis.

6.
Molecules ; 28(4)2023 Feb 18.
Article de Anglais | MEDLINE | ID: mdl-36838943

RÉSUMÉ

The chemical industry still requires development of environmentally friendly processes. Acid-catalysed chemical processes may cause environmental problems. Urgent need to replace conventional acids has forced the search for sustainable alternatives. Metal-containing ionic liquids have drawn considerable attention from scientists for many years. These compounds may exhibit very high Lewis acidity, which is usually dependent on the composition of the ionic liquid with the particular content of metal salt. Therefore, metal-containing ionic liquids have found a lot of applications and are successfully employed as catalysts, co-catalysts or reaction media in various fields of chemistry, especially in organic chemistry. Gallium(III)- and indium(III)-containing ionic liquids help to transfer the remarkable activity of metal salts into even more active and easier-to-handle forms of ionic liquids. This review highlights the wide range of possible applications and the high potential of metal-containing ionic liquids with special focus on Ga(III) and In(III), which may help to outline the framework for further development of the presented research topic and synthesis of new representatives of this group of compounds.


Sujet(s)
Gallium , Liquides ioniques , Liquides ioniques/composition chimique , Indium , Acides de Lewis/composition chimique , Techniques de chimie synthétique
7.
Phys Chem Chem Phys ; 25(14): 9785-9795, 2023 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-36647728

RÉSUMÉ

Neutron scattering with isotopic substitution was used to study the structure of concentrated sulfuric acid, and two protic ionic liquids (PILs): a Brønsted-acidic PIL, synthesised using pyridine and excess of sulfuric acid, [Hpy][HSO4]·H2SO4, and a hydrated PIL, in which an equimolar mixture of sulfuric acid and pyridine has been doped with water, [Hpy][HSO4]·2H2O. Brønsted acidic PILs are excellent solvents/catalysts for esterifications, driving reaction to completion by phase-separating water and ester products. Water-doped PILs are efficient solvents/antisolvents in biomass fractionation. This study was carried out to provide an insight into the relationship between the performance of PILs in the two respective processes and their liquid structure. It was found that a persistent sulfate/sulfuric acid/water network structure was retained through the transition from sulfuric acid to PILs, even in the presence of 2 moles (∼17 wt%) of water. Hydrogen sulfate PILs have the propensity to incorporate water into hydrogen-bonded anionic chains, with strong and directional hydrogen bonds, which essentially form a new water-in-salt solvent system, with its own distinct structure and physico-chemical properties. It is the properties of this hydrated PIL that can be credited both for the good performance in esterification and beneficial solvent/antisolvent behaviour in biomass fractionation.

8.
Materials (Basel) ; 15(19)2022 Sep 23.
Article de Anglais | MEDLINE | ID: mdl-36233947

RÉSUMÉ

During Baeyer-Villiger (BV) oxidation of cyclohexanone with peracids, oligo(ε-caprolactone) (OCL) may be formed. In this work, a two-step one-pot method for the synthesis of OCL involving the BV oxidation of cyclohexanone with peracids and then oligomerization of the resulting ε-caprolactone has been developed. The process was carried out in two solvents: toluene and cyclohexane. Based on the studies, it was determined that the increased temperature (45-55 °C) and the longer reaction time (4 h) favor the formation of OCls. Among the tested peracids (perC8-C12), perC10 turned out to be the most effective oxidant. Moreover, the obtained oligomers were characterized by means of NMR, MS MALDI TOF, and TGA analyses, which made it possible to determine the structure of oligomers (length and terminal groups of the chains). Additionally, the oligomers obtained after the distillation of the reaction mixture were analyzed.

9.
Molecules ; 27(19)2022 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-36234996

RÉSUMÉ

Immobilized poly(ethylene glycol) (PEG 600-PS) was used as an effective phase-transfer catalyst for the synthesis of hydroxypivaldehyde from isobutyraldehyde (IBA) and formaldehyde in the presence of an inorganic base. Studies on the influence of the parameters on the course of the reaction in a batch reactor showed that the use of the PEG 600-PS catalyst allowed one to obtain HPA with high efficiency (IBA conversion >96%, selectivity >98%) in a relatively short time and under mild conditions (2 h, 40 °C). The developed method enables easy separation of the post-reaction mixture by simple phase separation, and the immobilized catalyst can be separated by filtration and then used five times without a loss in its activity. The high activity and stability of the catalyst was also confirmed in a test carried out in a flow reactor.


Sujet(s)
Polyéthylène glycols , Polymères , Aldéhydes , Formaldéhyde , Polystyrènes
10.
Molecules ; 27(18)2022 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-36144636

RÉSUMÉ

Supported ionic liquid phases offer several advantages related with catalysis. Immobilization of ionic liquid on the solid support provides catalytic activity or efficient matrix for active phases, as enzymes or metal compounds. Ionic liquid can be physically adsorbed on the carrier (supported ionic liquid phase) or chemically grafted to the material surface (supported ionic liquid-like phase). The use of supported ionic liquid phases improves mass transport, reduces ionic amount in the process and, most importantly, enables effortless catalyst separation and recycling. Moreover, chemical modification of the surface material with ionic liquid prevents its leaching, enhancing length of catalyst life. Silica-based materials have become an effective and powerful matrix for supported ionic liquid-like phase due to its cost-efficiency, presence of hydroxyl groups on the surface enabling its functionalization, and specific material properties, such as the size and shapes of the pores. For these reasons, supported ionic liquid-like phase silica-based materials are successfully used in the organic catalysis.


Sujet(s)
Liquides ioniques , Catalyse , Liquides ioniques/composition chimique , Ions , Silice
11.
Molecules ; 27(15)2022 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-35956815

RÉSUMÉ

Due to its carcinogenic properties, the presence of formaldehyde in resins and other industrial products has been a subject of great concern in recent years. The presented review focuses on modern alternatives for the production of wood-based panels; i.e., substitutes for formaldehyde in the production of amino and phenolic resins, as well as novel hardeners for formaldehyde-free wood adhesives. Solutions in which formaldehyde in completely replaced are presented in this review. Recent advances indicate that it is possible to develop new formaldehyde-free systems of resins with compatible hardeners. The formaldehyde substitutes that have primarily been tested are glyoxal, glutaraldehyde, furfural, 5-hydroxymethylfurfural, and dimethoxyethanal. The use of such substitutes eliminates the problem of free formaldehyde emission originating from the resin used in the production of wood-based panels. However, these alternatives are mostly characterized by worse reactivity, and, as a result, the use of formaldehyde-free resins may affect the mechanical and strength properties of wood-based panels. Nonetheless, there are still many substantial challenges for the complete replacement of formaldehyde and further research is needed, especially in the field of transferring the technology to industrial practice.


Sujet(s)
Adhésifs , Bois , Glyoxal , Industrie , Résines végétales
12.
Int J Mol Sci ; 22(19)2021 Sep 27.
Article de Anglais | MEDLINE | ID: mdl-34638766

RÉSUMÉ

Carbohydrate moieties were combined with various cross-linkable anions (thiocyanate [SCN], tetracyanoborate [TCB], tricyanomethanide [TCM], and dicyanamide [DCA]) and investigated as precursors for the synthesis of nitrogen-doped and nitrogen-/sulfur-co-doped carbons. The influence of the molecular structures of the precursors on their thermophysical properties and the properties of the derived carbon materials was elucidated and compared to petroleum-derived analogs. A carbohydrate-based ionic liquid featuring an [SCN] anion yielded more carbon residues upon carbonization than its 1-ethyl-3-methylimidazolium analog, and the resulting dual-doping of the derived carbon material translated to enhanced catalytic activity in the oxygen reduction reaction.


Sujet(s)
Carbone/composition chimique , Liquides ioniques/composition chimique , Anions/composition chimique
13.
Materials (Basel) ; 14(20)2021 Oct 19.
Article de Anglais | MEDLINE | ID: mdl-34683815

RÉSUMÉ

As a result of strict regulations of phthalate plasticizers, alternative non-phthalate forms are desired and increasingly used. This work presents a synthetic method for alternative plasticizers (dialkyl succinates and adipates) via esterification of succinic and adipic acid with alcohols: butan-1-ol and 2-ethylhexan-1-ol. Ionic liquids were synthesized by the reaction of triethylamine with over-equimolar (1:2.7) amounts of sulfuric(VI) acid, which were used as an acidic catalyst and solvent. The two-phase liquid-liquid system was formed during the reaction due to immiscibility of the esters with the ionic liquid. This phenomenon is a driving force of this process, shifting the equilibrium toward the product formation. As a result, dialkyl succinates and adipates were obtained in high yields (99%) and selectivities (>99%), under mild reaction conditions at 70-80 °C and using a 4:1 molar ratio of alcohol to acid and 15 mol% of catalyst. The catalyst was recycled 10 times without any loss of activity. This alternative method is highly competitive: it involves a simple procedure for product isolation as well as a high yield and purity of the resulting esters. These advantages make this method sustainable and promising for industrial applications.

14.
Molecules ; 26(19)2021 Sep 25.
Article de Anglais | MEDLINE | ID: mdl-34641366

RÉSUMÉ

Neopentyl glycol (NPG) is a precursor for the manufacture of many valuable products of industrial importance such as polyester, polyurethane and alkyd resins, synthetic lubricants, hydraulic fluids, drugs, etc. The structure of NPG provides the resins with excellent hydrolytic stability, resistance to weather conditions, good flexibility-hardness balance, and outstanding functional properties. The paper presents a literature review on the development of methods for NPG preparation, focusing primarily on the synthesis of NPG by hydrogenation of hydroxypivaldehyde, which is obtained by the crossed aldol condensation of isobutyraldehyde and formaldehyde. Preparation of the substrates, catalysts, technical and apparatus solutions, and NPG purification were discussed.

15.
Molecules ; 26(16)2021 Aug 11.
Article de Anglais | MEDLINE | ID: mdl-34443448

RÉSUMÉ

Following our previous studies on the molecular level structure of (co)oligoesters obtained via anionic homo- and co-polymerization of novel ß-substituted ß-lactones, prepared by the atmospheric pressure carbonylation reaction of respective epoxides, the boric acid biocatalyzed ring-opening (co)polymerization of δ-valerolactone has been studied. As a co-monomer the 6-methy-ε-caprolactone, prepared by the one-pot oxidation of respective alcohol, and ethylene glycol as polymerization initiator were used. The obtained copolymers were characterized by 1H-NMR, GPC and ESI-MS, respectively in order to confirm their chemical structures and identity. Subsequently, tandem mass spectrometry (MS-MS studies) via collision-induced dissociation were utilized to characterize the fragmentation pattern. ESI-MS and NMR analyses confirmed the formation of random linear copolymer chains composed of different polyester repeat units. MS-MS experiments showed that fragmentation proceeds via ester bound cleavage along the (co)polyester chains. The innovative aspect of this contribution is related to the elaboration of the telechelic (co)polymers end-capped with hydroxyl end groups and well-defined molecular architectures, which could facilitate the development of new flexible macromolecular systems for potential biomedical applications.

16.
Nanomaterials (Basel) ; 11(8)2021 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-34443861

RÉSUMÉ

The development of effective methods of enzyme stabilization is key for the evolution of biocatalytic processes. An interesting approach combines the stabilization process of proteins in ionic liquids and the immobilization of the active phase on the solid support. As a result, stable, active and heterogeneous biocatalysts are obtained. There are several benefits associated with heterogeneous processes, as easy separation of the biocatalyst from the reaction mixture and the possibility of recycling. Accordingly, this work focused on the supported ionic liquid phases as the efficient enzyme stabilization carriers, and their application in both continuous flow and batch biocatalytic processes.

17.
Materials (Basel) ; 14(13)2021 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-34206178

RÉSUMÉ

A novel method for chemo-enzymatic Baeyer-Villiger oxidation of cyclic ketones in the presence of supported ionic liquid-like phase biocatalyst was designed. In this work, multi-walled carbon nanotubes were applied as a support for ionic liquids which were anchored to nanotubes covalently by amide or imine bonds. Next, lipases B from Candida antarctica, Candida rugosa, or Aspergillus oryzae were immobilized on the prepared materials. The biocatalysts were characterized using various techniques, like thermogravimetry, IR spectroscopy, XPS, elemental analysis, and SEM-EDS microscopy. In the proposed approach, a biocatalyst consisting of a lipase as an active phase allowed the generation of peracid in situ from the corresponding precursor and a green oxidant-hydrogen peroxide. The activity and stability of the obtained biocatalysts in the model oxidation of 2-adamantanone were demonstrated. High conversion of substrate (92%) was achieved under favorable conditions (toluene: n-octanoic acid ratio 1:1 = v:v, 35% aq. H2O2 2 eq., 0.080 g of biocatalyst per 1 mmol of ketone at 20 °C, reaction time 4 h) with four reaction cycles without a drop in its activity. Our 'properties-by-design' approach is distinguished by its short reaction time at low temperature and higher thermal stability in comparison with other biocatalysts presented in the literature reports.

18.
Materials (Basel) ; 14(11)2021 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-34200059

RÉSUMÉ

This study presents a highly efficient method of a synthesis of n-butyl acrylate via esterification of acrylic acid and n-butanol in the presence of supported ionic liquid phase (SILP) biocatalyst consisting of the lipase B from Candida antarctica (CALB) and multi-walled carbon nanotubes (MWCNTs) modified by D-glucose-based ionic liquids. Favorable reaction conditions (acrylic acid: n-butanol molar ratio 1:2, cyclohexane as a solvent, biocatalyst 0.150 g per 1 mmol of acrylic acid, temperature 25 °C) allowed the achievement of a 99% yield of n-butyl acrylate in 24 h. Screening of various ionic liquids showed that the most promising result was obtained if N-(6-deoxy-1-O-methoxy-α-D-glucopyranosyl)-N,N,N-trimethylammonium bis-(trifluoromethylsulfonyl)imide ([N(CH3)3GlcOCH3][N(Tf)2]) was selected in order to modify the outer surface of MWCNTs. The final SILP biocatalyst-CNTs-[N(CH3)3GlcOCH3][N(Tf)2]-CALB contained 1.8 wt.% of IL and 4.2 wt.% of CALB. Application of the SILP biocatalyst led to the enhanced activity of CALB in comparison with the biocatalyst prepared via physical adsorption of CALB onto MWCNTs (CNTs-CALB), as well as with commercially available Novozyme 435. Thus, the crucial role of IL in the stabilization of biocatalysts was clearly demonstrated. In addition, a significant stability of the developed biocatalytic system was confirmed (three runs with a yield of ester over 90%).

19.
Materials (Basel) ; 14(11)2021 May 27.
Article de Anglais | MEDLINE | ID: mdl-34072108

RÉSUMÉ

Lactones are a group of compounds that have been known for several decades. The commercial importance of lactones results from the possibility of manufacturing of a broad scope of derivatives and polymers with a wide spectrum of applications. In this work the synthesis and characterization of simple lactones are described, which due to the easy methods of the synthesis are of high importance for the industry. The chemical as well as biochemical methods are included with special attention paid to the methods that avoid metal catalysts, initiators or toxic solvents, allowing the use of the final products for the medical applications, e.g., for controlled drug-release systems, resorbable surgical threads, implants, tissue scaffolds or for the production of drugs. Lactone-based derivatives, such as polymers, copolymers, composites or three-dimensional structures are also presented. The work is focused on the methods for the synthesis of lactones and lactones derivates, as well as on the special properties and application of the studied compounds.

20.
Materials (Basel) ; 14(6)2021 Mar 19.
Article de Anglais | MEDLINE | ID: mdl-33808937

RÉSUMÉ

An effective method for levulinic acid esters synthesis by the enzymatic Fischer esterification of levulinic acid using a lipase B from Candida antarctica (CALB) immobilized on the advanced material consisting of multi-wall carbon nanotubes (MWCNTs) and a hydrophobic polymer-polytetrafluoroethylene (Teflon, PTFE)-as a heterogeneous biocatalyst, was developed. An active phase of the biocatalyst was obtained by immobilization via interfacial activation on the surface of the hybrid material MWCNTs/PTFE (immobilization yield: 6%, activity of CALB: 5000 U∙L∙kg-1, enzyme loading: 22.5 wt.%). The catalytic activity of the obtained biocatalyst and the effects of the selected reaction parameters, including the agitation speed, the amount of PTFE in the CALB/MWCNT-PTFE biocatalyst, the amount of CALB/MWCNT-PTFE, the type of organic solvent, n-butanol excess, were tested in the esterification of levulinic acid by n-butanol. The results showed that the use of a two-fold excess of levulinic acid to n-butanol, 22.5 wt.% of CALB on MWCNT-PTFE (0.10 wt.%) and cyclohexane as a solvent at 20 °C allowed one to obtain n-butyl levulinate with a high yield (99%) and selectivity (>99%) after 45 min. The catalyst retained its activity and stability after three cycles, and then started to lose activity until dropping to a 69% yield of ester in the sixth reaction run. The presented method has opened the new possibilities for environmentally friendly synthesis of levulinate esters.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...