Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
ACS Appl Mater Interfaces ; 15(30): 37047-37058, 2023 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-37486090

RÉSUMÉ

Molybdenum disulfide (MoS2) coatings have attracted widespread industrial interest owing to their excellent lubricating properties under vacuum and inert conditions. Unfortunately, the increase in MoS2 interfacial shear strength following prolonged exposure to ambient conditions (a process referred to as "aging") has resulted in reliability issues when MoS2 is employed as solid lubricant. While aging of MoS2 is generally attributed to physical and chemical changes caused by adsorbed water and/or oxygen, a mechanistic understanding of the relative role of these two gaseous species in the evolution of the surface chemistry of MoS2 is still elusive. Additionally, remarkably little is known about the effect of thermally- and tribologically-induced microstructural variations in MoS2 on the aging processes occurring in the near-surface region of the coating. Here, we employed three analytical techniques, namely, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and grazing-incidence X-ray diffraction (GIXRD), to gain insights into the aging phenomena occurring in sputtered MoS2 coatings before and after tribological testing, while also evaluating the impact of thermally-induced variations in the coating structure on aging. The outcomes of XPS analyses provide evidence that a substantial surface oxidation of MoS2 only takes place under humid conditions. Furthermore, the correlation of XPS, ToF-SIMS, and GIXRD results allowed for the development of a qualitative model for the impact of shear-induced microstructural variations in MoS2 on the transport of water in the near-surface region of this material and on the extent of surface oxidation. These results add significantly to our understanding of the aging mechanisms of MoS2 coatings used in tribological applications and their dependence on environmental conditions.

2.
Int J Pharm ; 628: 122306, 2022 Nov 25.
Article de Anglais | MEDLINE | ID: mdl-36265662

RÉSUMÉ

Freezing techniques are an essential part of biologics manufacturing processes, yet the formation of ice/water interfaces can impart detrimental effects on proteins. However, the absence of chemical and structural differences between ice and liquid water poses the question as to why ice can destabilize proteins. We hypothesize that the destabilizing stress of the ice-liquid water interface does not originate from the ice-water system itself but rather from the air microbubbles present during the freezing process. As the temperature decreases, the dissolved air is expelled from the ice crystal lattices in the form of microbubbles and is subsequently trapped by the advancing ice front. This newly formed air-water interface represents an additional interfacial area for the proteins to be adsorbed onto and denatured. The result showed that freezing at âˆ¼ 1 K/s led to the formation of small circular microbubbles with diameters ranging from 100 µm to 500 µm. In contrast, slower freezing resulted in the formation of larger, elongated millimeter-size bubbles. The reduction of the number of microbubbles was carried out by the deaeration process using agitation under reduced pressure at 20 kPa. The resulting deaerated (i.e., low dissolved air) protein samples were frozen and monitored for the formation of subvisible aggregates using micro-flow imaging (MFI). The results demonstrated that deaerating the samples prior to intermediate freezing (i.e., TFF) reduced the number of aggregates for both highly surface-active and low surface-active proteins (lactoferrin and bovine IgG, respectively). This reduction was more pronounced in spray freeze drying (SFD) than thin-film freezing (TFF), and less apparent in conventional lyophilization.


Sujet(s)
Glace , Microbulles , Bovins , Animaux , Congélation , Lyophilisation , Protéines/composition chimique
3.
Mol Pharm ; 19(7): 2662-2675, 2022 07 04.
Article de Anglais | MEDLINE | ID: mdl-35639017

RÉSUMÉ

Biological macromolecules, especially therapeutic proteins, are delicate and highly sensitive to denaturation from stresses encountered during the manufacture of dosage forms. Thin-film freeze-drying (TFFD) and spray freeze-drying (SFD) are two processes used to convert liquid forms of protein into dry powders. In the production of inhalable dry powders that contain proteins, these potential stressors fall into three categories based on their occurrence during the primary steps of the process: (1) droplet formation (e.g., the mechanism of droplet formation, including spray atomization), (2) freezing, and (3) frozen water removal (e.g., sublimation). This study compares the droplet formation mechanism used in TFFD and SFD by investigating the effects of spraying on the stability of proteins, using lactoferrin as a model. This study considers various perspectives on the denaturation (e.g., conformation) of lactoferrin after subjecting the protein solution to the atomization process using a pneumatic two-fluid nozzle (employed in SFD) or a low-shear drop application through the nozzle. The surface activity of lactoferrin was examined to explore the interfacial adsorption tendency, diffusion, and denaturation process. Subsequently, this study also investigates the secondary and tertiary structure of lactoferrin and the quantification of monomers, oligomers, and, ultimately, aggregates. The spraying process affected the tertiary structure more negatively than the tightly woven secondary structure, resulting in the peak position corresponding to the tryptophan (Trp) residues red-shifting by 1.5 nm. This conformational change can either (a) be reversed at low concentrations via relaxation or (b) proceed to form irreversible aggregates at higher concentrations. Interestingly, when the sample was allowed to progress into micrometer-sized aggregates, such a dramatic change was not detected using methods such as size-exclusion chromatography, polyacrylamide gel electrophoresis, and dynamic light scattering at 173°. A more complete understanding of the heterogeneous protein sample was achieved only through a combination of 173 and 13° backward and forward scattering, a combination of derived count rate measurements, and microflow imaging (MFI). After studying the impact of droplet formation mechanisms on aggregation tendency of lactoferrin, we further investigated two additional model proteins with different surface activity: bovine IgG (serving as a non surface-active negative reference), and ß-galactosidase (another surface-active protein). The results corroborated the lactoferrin findings that spray-atomization-related stress-induced protein aggregation was much more pronounced for proteins that are surface active (lactoferrin and ß-galactosidase), but it was minimal for non-surface-active protein (bovine IgG). Finally, compared to the low-shear dripping used in the TFFD process, lactoferrin underwent a relatively fast conformational change upon exposure to the high air-water interface of the two-fluid atomization nozzle used in the SFD process as compared to the low shear dripping used in the TFFD process. The interfacial-induced denaturation that occurred during spraying was governed primarily by the size of the atomized droplets, regardless of the duration of exposure to air. The percentage of denatured protein population and associated activity loss, in the case of ß-galactosidase, was determined to range from 2 to 10% depending on the air-flow rate of the spraying process.


Sujet(s)
Lactoferrine , Eau , Animaux , Bovins , Lyophilisation/méthodes , Immunoglobuline G , Taille de particule , Poudres/composition chimique , Eau/composition chimique , beta-Galactosidase
4.
ACS Nano ; 16(3): 3756-3767, 2022 Mar 22.
Article de Anglais | MEDLINE | ID: mdl-35188367

RÉSUMÉ

Molybdenum trioxide (MoO3), an important transition metal oxide (TMO), has been extensively investigated over the past few decades due to its potential in existing and emerging technologies, including catalysis, energy and data storage, electrochromic devices, and sensors. Recently, the growing interest in two-dimensional (2D) materials, often rich in interesting properties and functionalities compared to their bulk counterparts, has led to the investigation of 2D MoO3. However, the realization of large-area true 2D (single to few atom layers thick) MoO3 is yet to be achieved. Here, we demonstrate a facile route to obtain wafer-scale monolayer amorphous MoO3 using 2D MoS2 as a starting material, followed by UV-ozone oxidation at a substrate temperature as low as 120 °C. This simple yet effective process yields smooth, continuous, uniform, and stable monolayer oxide with wafer-scale homogeneity, as confirmed by several characterization techniques, including atomic force microscopy, numerous spectroscopy methods, and scanning transmission electron microscopy. Furthermore, using the subnanometer MoO3 as the active layer sandwiched between two metal electrodes, we demonstrate the thinnest oxide-based nonvolatile resistive switching memory with a low voltage operation and a high ON/OFF ratio. These results (potentially extendable to other TMOs) will enable further exploration of subnanometer stoichiometric MoO3, extending the frontiers of ultrathin flexible oxide materials and devices.

5.
RSC Adv ; 12(1): 413-419, 2021 Dec 20.
Article de Anglais | MEDLINE | ID: mdl-35424509

RÉSUMÉ

In this work, we perform atomic force microscopy (AFM) experiments to evaluate in situ the dependence of the structural morphology of trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate ([P6,6,6,14][DEHP]) ionic liquid (IL) on applied pressure. The experimental results obtained upon sliding a diamond-like-carbon-coated silicon AFM tip on mechanically polished steel at an applied pressure up to 5.5 ± 0.3 GPa indicate a structural transition of confined [P6,6,6,14][DEHP] molecules. This pressure-induced morphological change of [P6,6,6,14][DEHP] IL leads to the generation of a lubricious, solid-like interfacial layer, whose growth rate increases with applied pressure and temperature. The structural variation of [P6,6,6,14][DEHP] IL is proposed to derive from the well-ordered layering of the polar groups of ions separated by the apolar tails. These results not only shed new light on the structural organization of phosphonium-based ILs under elevated pressure, but also provide novel insights into the normal pressure-dependent lubrication mechanisms of ILs in general.

6.
Article de Anglais | MEDLINE | ID: mdl-30488033

RÉSUMÉ

The field of medical micro/nanorobotics holds considerable promise for advancing medical diagnosis and treatment due to their unique ability to move and perform complex task at small scales. Nevertheless, the grand challenge of the field remains in its successful translation towards widespread patient use. We critically address the frontiers of the current methodologies for in vivo applications and discuss the current and foreseeable perspectives of their commercialization. Although no "killer application" that would catalyze rapid commercialization has yet emerged, recent engineering breakthroughs have led to the successful in vivo operation of medical micro/nanorobots. We also highlight how standardizing report summaries of micro/nanorobotics is essential not only for increasing the quality of research but also for minimizing investment risk in their potential commercialization. We review current patents and commercialization efforts based on emerging proof-of-concept applications. We expect to inspire future research efforts in the field of micro/nanorobotics toward future medical diagnosis and treatment.

7.
Analyst ; 142(6): 918-924, 2017 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-28220163

RÉSUMÉ

A microneedle electrochemical biosensor for the minimally invasive detection of organophosphate (OP) chemical agents is described. The new sensor relies on the coupling of the effective biocatalytic action of organophosphorus hydrolase (OPH) with a hollow-microneedle modified carbon-paste array electrode transducer, and involves rapid square-wave voltammetric (SWV) measurements of the p-nitrophenol product of the OPH enzymatic reaction in the presence of the OP substrate. The scanning-potential SWV transduction mode offers an additional dimension of selectivity compared to common fixed-potential OPH-amperometric biosensors. The microneedle device offers a highly linear response for methyl paraoxon (MPOx) over the range of 20-180 µM, high selectivity in the presence of excess co-existing ascorbic acid and uric acid and a high stability sensor upon exposure to the interstitial fluid (ISF). The OPH microneedle sensor was successfully tested ex vivo using mice skin samples exposed to MPOx, demonstrating its promise for minimally-invasive monitoring of OP agents and pesticides and as a wearable sensor for detecting toxic compounds, in general.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE