Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Water Sci Technol ; 82(9): 1833-1847, 2020 Nov.
Article de Anglais | MEDLINE | ID: mdl-33201847

RÉSUMÉ

Increasing agricultural irrigation to counteract a soil moisture deficit has resulted in the production of hazardous agricultural wastewater with high turbidity and chemical oxygen demand (COD). An innovative, sustainable, and effective solution is needed to overcome the pollution and water scarcity issues caused by the agricultural anthropogenic processes. This research focused on a sustainable solution that utilized a waste (broken lentil) as natural coagulant for turbidity and COD removal in agricultural wastewater treatment. The efficiency of the lentil extract (LE), grafted lentil extract (LE-g-DMC) and aluminium sulphate (alum) coagulants was optimized through the response surface methodology. Three-level Box-Behnken design was used to statistically visualize the complex interactions of pH, concentration of coagulants and settling time. LE achieved a significant 99.55% and 79.87% removal of turbidity and COD at pH 4, 88.46 mg/L of LE and 6.9 minutes of settling time, whereas LE-g-DMC achieved 99.83% and 80.32% removal of turbidity and COD at pH 6.7, 63.08 mg/L of LE-g-DMC and 5 minutes of settling time. As compared to alum, LE-g-DMC required approximately 30% less concentration. Moreover, LE and LE-g-DMC also required 75% and 65% less settling time as compared to the alum. Both LE and LE-g-DMC produced flocs with excellent settling ability (5.77 mg/L and 4.48 mL/g) and produced a significant less volume of sludge (10.60 mL/L and 8.23 mL/L) as compared with the alum. The economic analysis and assessments have proven the feasibility of both lentil-based coagulants in agricultural wastewater treatment.


Sujet(s)
Lens , Purification de l'eau , Alun , Analyse de la demande biologique en oxygène , Eaux d'égout , Élimination des déchets liquides , Eaux usées
2.
Sci Rep ; 10(1): 3959, 2020 03 03.
Article de Anglais | MEDLINE | ID: mdl-32127558

RÉSUMÉ

The importance of graft copolymerization in the field of polymer science is analogous to the importance of alloying in the field of metals. This is attribute to the ability of the grafting method to regulate the properties of polymer 'tailor-made' according to specific needs. This paper described a novel plant-based coagulant, LE-g-DMC that synthesized through grafting of 2-methacryloyloxyethyl trimethyl ammonium chloride (DMC) onto the backbone of the lentil extract. The grafting process was optimized through the response surface methodology (RSM) using three-level Box-Behnken Design (BBD). Under optimum conditions, a promising grafting percentage of 120% was achieved. Besides, characterization study including SEM, zeta potential, TGA, FTIR and EDX were used to confirm the grafting of the DMC monomer chain onto the backbone of lentil extract. The grafted coagulant, LE-g-DMC outperformed lentil extract and alum in turbidity reduction and effective across a wide range of pH from pH 4 to pH 10. Besides, the use of LE-g-DMC as coagulant produced flocs with excellent settling ability (5.09 mL/g) and produced the least amount of sludge. Therefore, from an application and economic point of views, LE-g-DMC was superior to native lentil extract coagulant and commercial chemical coagulant, alum.


Sujet(s)
Lens/composition chimique , Micro-ondes , Extraits de plantes/composition chimique , Composés de triméthyl-ammonium/composition chimique , Modèles théoriques , Spectroscopie infrarouge à transformée de Fourier
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE