Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 176
Filtrer
1.
Brain Imaging Behav ; 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39254921

RÉSUMÉ

Resting-state functional connectivity (FC) is suggested to be cross-sectionally associated with both vascular burden and Alzheimer's disease (AD) pathology. For instance, studies in pre-clinical AD subjects have shown increases of cerebral spinal fluid soluble platelet-derived growth factor receptor-ß (CSF sPDGFRß, a marker of BBB breakdown) but have not demonstrated if this vascular impairment affects neuronal dysfunction. It's possible that increased levels of sPDGFRß in the CSF may correlate with impaired FC in metabolically demanding brain regions (i.e. Default Mode Network, DMN). Our study aimed to investigate the relationship between these two markers in older individuals that were cognitively normal and had cognitive impairment. Eighty-nine older adults without dementia from the University of Southern California were selected from a larger cohort. Region of interest (ROI) to ROI analyses were conducted using DMN seed regions. Linear regression models measured significant associations between BOLD FC strength among seed-target regions and sPDGFRß values, while covarying for age and sex. Comparison of a composite ROI created by averaging FC values between seed and all target regions among cognitively normal and impaired individuals was also examined. Using CSF sPDGFRß as a biomarker of BBB breakdown, we report that increased breakdown correlated with decreased functional connectivity in DMN areas, specifically the PCC, and while the hippocampus exhibited an interaction effect using CDR score, this was an exploratory analysis that we feel can lead to further research. Ultimately, we found that BBB breakdown, as measured by CSF sPDGFRß, is associated with neural networks, and decreased functional connections.

2.
Res Sq ; 2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38798644

RÉSUMÉ

Background: Cellular senescence is a hallmark of aging and has been implicated in Alzheimer's disease (AD) pathogenesis. Cholesterol accumulation drives cellular senescence; however, the underlying mechanisms are unclear. ATP-binding cassette transporter A1 (ABCA1) plays an important role in cholesterol homeostasis. ABCA1 expression and its trafficking is afiltered in APOE4 and AD cellular and mouse models. However, whether ABCA1 trafficking is involved in cellular senescence in APOE4 and AD remains unknown. Methods: We examined the association between cellular senescence and ABCA1 expression in human postmortem brain samples using transcriptomic, histological, and biochemical analyses. An unbiased proteomic screening was performed to identify targets that mediate cellular ABCA1 trafficking. APOE4-TR mice, immortalized, primary and induced pluripotent stem cell (iPSC) models were used to examine the cholesterol-ABCA1-senescence pathways. Results: Bulk and single nuclei transcriptomic profiling of the human dorsolateral prefrontal cortex from the Religious Order Study/Memory Aging Project (ROSMAP) revealed upregulation of cellular senescence transcriptome signatures in AD, which was strongly correlated with ABCA1 expression. Immunofluorescence and immunoblotting analyses confirmed increased ABCA1 expression in AD brain tissues, which was associated with lipofuscin-stained lipids and mTOR phosphorylation. Using discovery proteomics, caveolin-1, a sensor of cellular cholesterol accumulation, was identified to promote ABCA1 endolysosomal trafficking. Greater caveolin-1 expression was found in both APOE4-TR mouse models and AD human brains. Cholesterol induced mTORC1 activation was regulated by ABCA1 expression or its lysosomal trapping. Reducing cholesterol by cyclodextrin in APOE4-TR mice reduced ABCA1 lysosome trapping and increased ABCA1 recycling to efflux cholesterol to HDL particles, reducing mTORC1 activation and senescence-associated neuroinflammation. In human iPSC-derived astrocytes, the reduction of cholesterol by cyclodextrin attenuated inflammatory responses. Conclusions: Cholesterol accumulation in APOE4 and AD induced caveolin-1 expression, which traps ABCA1 in lysosomes to activate mTORC1 pathways and induce cellular senescence. This study provided novel insights into how cholesterol accumulation in APOE4 and AD accelerates senescence.

3.
Alzheimers Dement ; 20(5): 3472-3484, 2024 05.
Article de Anglais | MEDLINE | ID: mdl-38591250

RÉSUMÉ

INTRODUCTION: The course of depressive symptoms and dementia risk is unclear, as are potential structural neuropathological common causes. METHODS: Utilizing joint latent class mixture models, we identified longitudinal trajectories of annually assessed depressive symptoms and dementia risk over 21 years in 957 older women (baseline age 72.7 years old) from the Women's Health Initiative Memory Study. In a subsample of 569 women who underwent structural magnetic resonance imaging, we examined whether estimates of cerebrovascular disease and Alzheimer's disease (AD)-related neurodegeneration were associated with identified trajectories. RESULTS: Five trajectories of depressive symptoms and dementia risk were identified. Compared to women with minimal symptoms, women who reported mild and stable and emerging depressive symptoms were at the highest risk of developing dementia and had more cerebrovascular disease and AD-related neurodegeneration. DISCUSSION: There are heterogeneous profiles of depressive symptoms and dementia risk. Common neuropathological factors may contribute to both depression and dementia. Highlights The progression of depressive symptoms and concurrent dementia risk is heterogeneous. Emerging depressive symptoms may be a prodromal symptom of dementia. Cerebrovascular disease and AD are potentially shared neuropathological factors.


Sujet(s)
Démence , Dépression , Imagerie par résonance magnétique , Humains , Femelle , Sujet âgé , Démence/anatomopathologie , Démence/épidémiologie , Études longitudinales , Encéphale/anatomopathologie , Encéphale/imagerie diagnostique , Angiopathies intracrâniennes/anatomopathologie , Maladie d'Alzheimer/anatomopathologie , Évolution de la maladie , Facteurs de risque
4.
Magn Reson Med ; 92(2): 605-617, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38440807

RÉSUMÉ

PURPOSE: Directly imaging the function of cerebral perforating arteries could provide valuable insight into the pathology of cerebral small vessel diseases (cSVD). Arterial pulsatility has been identified as a useful biomarker for assessing vascular dysfunction. In this study, we investigate the feasibility and reliability of using dual velocity encoding (VENC) phase-contrast MRI (PC-MRI) to measure the pulsatility of cerebral perforating arteries at 7 T. METHODS: Twenty participants, including 12 young volunteers and 8 elder adults, underwent high-resolution 2D PC-MRI scans with VENCs of 20 cm/s and 40 cm/s at 7T. The sensitivity of perforator detection and the reliability of pulsatility measurement of cerebral perforating arteries using dual-VENC PC-MRI were evaluated by comparison with the single-VENC data. The effects of temporal resolution in the PC-MRI acquisition and aging on the pulsatility measurements were investigated. RESULTS: Compared to the single VENCs, dual-VENC PC-MRI provided improved sensitivity of perforator detection and more reliable pulsatility measurements. Temporal resolution impacted the pulsatility measurements, as decreasing temporal resolution led to an underestimation of pulsatility. Elderly adults had elevated pulsatility in cerebral perforating arteries compared to young adults, but there was no difference in the number of detected perforators between the two age groups. CONCLUSION: Dual-VENC PC-MRI is a reliable imaging method for the assessment of pulsatility of cerebral perforating arteries, which could be useful as a potential imaging biomarker of aging and cSVD.


Sujet(s)
Artères cérébrales , Imagerie par résonance magnétique , Écoulement pulsatoire , Humains , Femelle , Mâle , Adulte , Sujet âgé , Reproductibilité des résultats , Artères cérébrales/imagerie diagnostique , Artères cérébrales/physiologie , Écoulement pulsatoire/physiologie , Imagerie par résonance magnétique/méthodes , Adulte d'âge moyen , Jeune adulte , Maladies des petits vaisseaux cérébraux/imagerie diagnostique , Circulation cérébrovasculaire/physiologie , Vitesse du flux sanguin/physiologie , Angiographie par résonance magnétique/méthodes , Traitement d'image par ordinateur/méthodes
5.
Am J Geriatr Psychiatry ; 32(1): 58-67, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-37827916

RÉSUMÉ

OBJECTIVE: Prior studies have reported an association between depression and quality of life (QOL) in Alzheimer's disease (AD), but the effect of self- versus proxy rating of mood and QOL has not been described. DESIGN: In this secondary analysis of data from a cohort study, the authors used a linear mixed-effects model to determine if the association between depression and QOL is affected by whether both measures are assessed by the same member of the patient-caregiver dyad. SETTING: Participants and caregiver informants were recruited from 10 California Alzheimer Disease Centers. PARTICIPANTS: A total of 137 participants with mild-to-moderate Alzheimer's disease and their caregivers. MEASUREMENTS: Self- and proxy-rated scores on both the Geriatric Depression Scale (GDS) and the Quality of Life in Alzheimer's Disease scale (QoL-AD). Multivariable linear mixed-effects models were used to estimate the association between depression and QOL. RESULTS: Results of the multivariable linear mixed-effects models showed a significant association between self-rated QoL-AD and self-rated (B = -0.49, p <0.0001) but not proxy-rated GDS (B = -0.07, p = 0.19) after adjusting for confounders. Likewise, there was a significant association between proxy-rated QoL-AD and proxy-rated GDS (B = -0.48, p <0.0001) but not self-rated GDS (B = 0.05, p = 0.36). CONCLUSION: Depression was associated with QOL in AD over short-term longitudinal follow-up, but the association was not statistically significant if both instruments are not administered to the same member of the patient-caregiver dyad. The choice of self- versus proxy-reported QOL should be intentionally considered in future studies as it may influence reported outcomes.


Sujet(s)
Maladie d'Alzheimer , Humains , Sujet âgé , Maladie d'Alzheimer/complications , Qualité de vie , Dépression/épidémiologie , Dépression/complications , Études de cohortes , Tests neuropsychologiques , Échelles d'évaluation en psychiatrie , Aidants
6.
medRxiv ; 2023 Nov 29.
Article de Anglais | MEDLINE | ID: mdl-38076972

RÉSUMÉ

Exposure to ambient air pollution, especially particulate matter with aerodynamic diameter <2.5 µm (PM2.5) and nitrogen dioxide (NO2), are environmental risk factors for Alzheimer's disease and related dementia. The medial temporal lobe (MTL) is an important brain region subserving episodic memory that atrophies with age, during the Alzheimer's disease continuum, and is vulnerable to the effects of cerebrovascular disease. Despite the importance of air pollution it is unclear whether exposure leads to atrophy of the MTL and by what pathways. Here we conducted a longitudinal study examining associations between ambient air pollution exposure and MTL atrophy and whether putative air pollution exposure effects resembled Alzheimer's disease-related neurodegeneration or cerebrovascular disease-related neurodegeneration. Participants included older women (n = 627; aged 71-87) who underwent two structural brain MRI scans (MRI-1: 2005-6; MRI-2: 2009-10) as part of the Women's Health Initiative Memory Study of Magnetic Resonance Imaging. Regionalized universal kriging was used to estimate annual concentrations of PM2.5 and NO2 at residential locations aggregated to 3-year averages prior to MRI-1. The outcome was 5-year standardized change in MTL volumes. Mediators included voxel-based MRI measures of the spatial pattern of neurodegeneration of Alzheimer's disease (Alzheimer's disease pattern similarity scores [AD-PS]) and whole-brain white matter small-vessel ischemic disease (WM-SVID) volume as a proxy of global cerebrovascular damage. Structural equation models were constructed to examine whether the associations between exposures with MTL atrophy were mediated by the initial level or concurrent change in AD-PS score or WM-SVID while adjusting for sociodemographic, lifestyle, clinical characteristics, and intracranial volume. Living in locations with higher PM2.5 (per interquartile range [IQR]=3.17µg/m3) or NO2 (per IQR=6.63ppb) was associated with greater MTL atrophy (ßPM2.5 = -0.29, 95% confidence interval [CI]=[-0.41,-0.18]; ßNO2 =-0.12, 95%CI=[-0.23,-0.02]). Greater PM2.5 was associated with larger increases in AD-PS (ßPM2.5 = 0.23, 95%CI=[0.12,0.33]) over time, which partially mediated associations with MTL atrophy (indirect effect= -0.10; 95%CI=[-0.15, -0.05]), explaining approximately 32% of the total effect. NO2 was positively associated with AD-PS at MRI-1 (ßNO2=0.13, 95%CI=[0.03,0.24]), which partially mediated the association with MTL atrophy (indirect effect= -0.01, 95% CI=[-0.03,-0.001]). Global WM-SVID at MRI-1 or concurrent change were not significant mediators between exposures and MTL atrophy. Findings support the mediating role of Alzheimer's disease-related neurodegeneration contributing to MTL atrophy associated with late-life exposures to air pollutants. Alzheimer's disease-related neurodegeneration only partially explained associations between exposure and MTL atrophy suggesting the role of multiple neuropathological processes underlying air pollution neurotoxicity on brain aging.

7.
medRxiv ; 2023 Nov 29.
Article de Anglais | MEDLINE | ID: mdl-38077091

RÉSUMÉ

Background: Ambient air pollution exposures increase risk for Alzheimer's disease (AD) and related dementias, possibly due to structural changes in the medial temporal lobe (MTL). However, existing MRI studies examining exposure effects on the MTL were cross-sectional and focused on the hippocampus, yielding mixed results. Method: To determine whether air pollution exposures were associated with MTL atrophy over time, we conducted a longitudinal study including 653 cognitively unimpaired community-dwelling older women from the Women's Health Initiative Memory Study with two MRI brain scans (MRI-1: 2005-6; MRI-2: 2009-10; Mage at MRI-1=77.3±3.5years). Using regionalized universal kriging models, exposures at residential locations were estimated as 3-year annual averages of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) prior to MRI-1. Bilateral gray matter volumes of the hippocampus, amygdala, parahippocampal gyrus (PHG), and entorhinal cortex (ERC) were summed to operationalize the MTL. We used linear regressions to estimate exposure effects on 5-year volume changes in the MTL and its subregions, adjusting for intracranial volume, sociodemographic, lifestyle, and clinical characteristics. Results: On average, MTL volume decreased by 0.53±1.00cm3 over 5 years. For each interquartile increase of PM2.5 (3.26µg/m3) and NO2 (6.77ppb), adjusted MTL volume had greater shrinkage by 0.32cm3 (95%CI=[-0.43, -0.21]) and 0.12cm3 (95%CI=[-0.22, -0.01]), respectively. The exposure effects did not differ by APOE ε4 genotype, sociodemographic, and cardiovascular risk factors, and remained among women with low-level PM2.5 exposure. Greater PHG atrophy was associated with higher PM2.5 (b=-0.24, 95%CI=[-0.29, -0.19]) and NO2 exposures (b=-0.09, 95%CI=[-0.14, -0.04]). Higher exposure to PM2.5 but not NO2 was also associated with greater ERC atrophy. Exposures were not associated with amygdala or hippocampal atrophy. Conclusion: In summary, higher late-life PM2.5 and NO2 exposures were associated with greater MTL atrophy over time in cognitively unimpaired older women. The PHG and ERC - the MTL cortical subregions where AD neuropathologies likely begin, may be preferentially vulnerable to air pollution neurotoxicity.

8.
J Clin Exp Neuropsychol ; 45(6): 553-569, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37990912

RÉSUMÉ

OBJECTIVE: The Spanish English Neuropsychological Assessment Scale (SENAS) is a cognitive battery with English and Spanish versions for use with persons for whom either language is predominant. Few studies have examined its utility outside the normative sample. The current study examined SENAS performance in samples of older adult Latines and Latines with or at risk for autosomal dominant Alzheimer's disease (ADAD) mutations. METHOD: The SENAS was administered to 202 older adults from the Los Angeles Latino Eye Study (LALES) and 29 adults with (carriers) or without (non-carriers) mutations causing ADAD. We examined associations between SENAS, age, education, and language (LALES) and between SENAS, estimated years from familial age of dementia diagnosis, education, language, and acculturation (ADAD). Partial correlations were used to examine differences in correlational strength between estimated years from familial age of dementia diagnosis and SENAS scores among ADAD carriers compared to chronological age and SENAS in the LALES sample. Exploratory t-tests were performed to examine SENAS performance differences between ADAD carriers and non-carriers. RESULTS: In an older adult sample (LALES), increased age correlated with worse verbal delayed recall; English fluency and higher education correlated with better naming and visuospatial subtest performance. Among ADAD carriers, verbal and nonverbal delayed recall and object naming subtest performance worsened as they approached their familial age of dementia diagnosis. English fluency and higher U.S.-acculturation were related to better SENAS performance among carriers and non-carriers. Tests of verbal delayed recall and object naming best distinguished ADAD carriers from their familial non-carrier counterparts. CONCLUSIONS: Verbal delayed recall and object naming measures appear to be most sensitive to age-related changes in older adult samples and mutation-related changes in distinguishing ADAD carriers from non-carriers. Future research should examine the sensitivity of SENAS in other samples, such as larger samples of symptomatic ADAD carriers and other AD subtypes.


Sujet(s)
Maladie d'Alzheimer , Humains , Sujet âgé , Maladie d'Alzheimer/diagnostic , Maladie d'Alzheimer/génétique , Langage , Mutation , Hispanique ou Latino/psychologie , Tests neuropsychologiques
9.
JAMA Neurol ; 80(12): 1353-1363, 2023 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-37843849

RÉSUMÉ

Importance: Increased white matter hyperintensity (WMH) volume is a common magnetic resonance imaging (MRI) finding in both autosomal dominant Alzheimer disease (ADAD) and late-onset Alzheimer disease (LOAD), but it remains unclear whether increased WMH along the AD continuum is reflective of AD-intrinsic processes or secondary to elevated systemic vascular risk factors. Objective: To estimate the associations of neurodegeneration and parenchymal and vessel amyloidosis with WMH accumulation and investigate whether systemic vascular risk is associated with WMH beyond these AD-intrinsic processes. Design, Setting, and Participants: This cohort study used data from 3 longitudinal cohort studies conducted in tertiary and community-based medical centers-the Dominantly Inherited Alzheimer Network (DIAN; February 2010 to March 2020), the Alzheimer's Disease Neuroimaging Initiative (ADNI; July 2007 to September 2021), and the Harvard Aging Brain Study (HABS; September 2010 to December 2019). Main Outcome and Measures: The main outcomes were the independent associations of neurodegeneration (decreases in gray matter volume), parenchymal amyloidosis (assessed by amyloid positron emission tomography), and vessel amyloidosis (evidenced by cerebral microbleeds [CMBs]) with cross-sectional and longitudinal WMH. Results: Data from 3960 MRI sessions among 1141 participants were included: 252 pathogenic variant carriers from DIAN (mean [SD] age, 38.4 [11.2] years; 137 [54%] female), 571 older adults from ADNI (mean [SD] age, 72.8 [7.3] years; 274 [48%] female), and 318 older adults from HABS (mean [SD] age, 72.4 [7.6] years; 194 [61%] female). Longitudinal increases in WMH volume were greater in individuals with CMBs compared with those without (DIAN: t = 3.2 [P = .001]; ADNI: t = 2.7 [P = .008]), associated with longitudinal decreases in gray matter volume (DIAN: t = -3.1 [P = .002]; ADNI: t = -5.6 [P < .001]; HABS: t = -2.2 [P = .03]), greater in older individuals (DIAN: t = 6.8 [P < .001]; ADNI: t = 9.1 [P < .001]; HABS: t = 5.4 [P < .001]), and not associated with systemic vascular risk (DIAN: t = 0.7 [P = .40]; ADNI: t = 0.6 [P = .50]; HABS: t = 1.8 [P = .06]) in individuals with ADAD and LOAD after accounting for age, gray matter volume, CMB presence, and amyloid burden. In older adults without CMBs at baseline, greater WMH volume was associated with CMB development during longitudinal follow-up (Cox proportional hazards regression model hazard ratio, 2.63; 95% CI, 1.72-4.03; P < .001). Conclusions and Relevance: The findings suggest that increased WMH volume in AD is associated with neurodegeneration and parenchymal and vessel amyloidosis but not with elevated systemic vascular risk. Additionally, increased WMH volume may represent an early sign of vessel amyloidosis preceding the emergence of CMBs.


Sujet(s)
Maladie d'Alzheimer , Amyloïdose , Substance blanche , Humains , Femelle , Sujet âgé , Adulte , Mâle , Maladie d'Alzheimer/imagerie diagnostique , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/complications , Substance blanche/imagerie diagnostique , Substance blanche/anatomopathologie , Études longitudinales , Études de cohortes , Études transversales , Imagerie par résonance magnétique , Amyloïdose/complications , Protéines amyloïdogènes
10.
Neurobiol Aging ; 132: 1-12, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37708739

RÉSUMÉ

In older adults with abnormal levels of Alzheimer's disease neuropathology, lower cerebrospinal fluid (CSF) vascular endothelial growth factor (VEGF) levels are associated with lower [¹8F]-fluorodeoxyglucose positron emission tomography (FDG-PET) signal, but whether this association is (1) specific to VEGF or broadly driven by vascular inflammation, or (2) modified by vascular risk (e.g., white matter hyperintensities [WMHs]) remains unknown. To address this and build upon our past work, we evaluated whether 5 CSF vascular inflammation biomarkers (vascular cell adhesion molecule 1, VEGF, C-reactive protein, fibrinogen, and von Willebrand factor)-previously associated with CSF amyloid levels-were related to FDG-PET signal and whether WMH volume modified these associations in 158 Alzheimer's Disease Neuroimaging Initiative participants (55-90 years old, 39 cognitively normal, 80 mild cognitive impairment, 39 Alzheimer's disease). We defined regions both by cortical boundary and by the 3 major vascular territories: anterior, middle, and posterior cerebral arteries. We found that WMH volume had interactive effects with CSF biomarkers (VEGF and C-reactive protein) on FDG-PET throughout the cortex in both vascular territories and conventionally defined regions of interest.


Sujet(s)
Maladie d'Alzheimer , Dysfonctionnement cognitif , Substance blanche , Humains , Sujet âgé , Sujet âgé de 80 ans ou plus , Maladie d'Alzheimer/métabolisme , Fluorodésoxyglucose F18/métabolisme , Facteur de croissance endothéliale vasculaire de type A/métabolisme , Substance blanche/anatomopathologie , Protéine C-réactive , Encéphale/métabolisme , Tomographie par émission de positons/méthodes , Marqueurs biologiques/liquide cérébrospinal , Dysfonctionnement cognitif/métabolisme , Inflammation/métabolisme , Peptides bêta-amyloïdes/métabolisme , Imagerie par résonance magnétique
11.
Sci Transl Med ; 15(703): eabq5923, 2023 07 05.
Article de Anglais | MEDLINE | ID: mdl-37406134

RÉSUMÉ

Proteomic studies for Alzheimer's disease (AD) are instrumental in identifying AD pathways but often focus on single tissues and sporadic AD cases. Here, we present a proteomic study analyzing 1305 proteins in brain tissue, cerebrospinal fluid (CSF), and plasma from patients with sporadic AD, TREM2 risk variant carriers, patients with autosomal dominant AD (ADAD), and healthy individuals. We identified 8 brain, 40 CSF, and 9 plasma proteins that were altered in individuals with sporadic AD, and we replicated these findings in several external datasets. We identified a proteomic signature that differentiated TREM2 variant carriers from both individuals with sporadic AD and healthy individuals. The proteins associated with sporadic AD were also altered in patients with ADAD, but with a greater effect size. Brain-derived proteins associated with ADAD were also replicated in additional CSF samples. Enrichment analyses highlighted several pathways, including those implicated in AD (calcineurin and Apo E), Parkinson's disease (α-synuclein and LRRK2), and innate immune responses (SHC1, ERK-1, and SPP1). Our findings suggest that combined proteomics across brain tissue, CSF, and plasma can be used to identify markers for sporadic and genetically defined AD.


Sujet(s)
Maladie d'Alzheimer , Humains , Maladie d'Alzheimer/métabolisme , Protéomique , Encéphale/métabolisme , Immunité innée , Hétérozygote , Marqueurs biologiques/métabolisme , Protéines tau/métabolisme , Peptides bêta-amyloïdes/métabolisme
12.
Aging Cell ; 22(8): e13871, 2023 08.
Article de Anglais | MEDLINE | ID: mdl-37291760

RÉSUMÉ

Although pathogenic variants in PSEN1 leading to autosomal-dominant Alzheimer disease (ADAD) are highly penetrant, substantial interindividual variability in the rates of cognitive decline and biomarker change are observed in ADAD. We hypothesized that this interindividual variability may be associated with the location of the pathogenic variant within PSEN1. PSEN1 pathogenic variant carriers participating in the Dominantly Inherited Alzheimer Network (DIAN) observational study were grouped based on whether the underlying variant affects a transmembrane (TM) or cytoplasmic (CY) protein domain within PSEN1. CY and TM carriers and variant non-carriers (NC) who completed clinical evaluation, multimodal neuroimaging, and lumbar puncture for collection of cerebrospinal fluid (CSF) as part of their participation in DIAN were included in this study. Linear mixed effects models were used to determine differences in clinical, cognitive, and biomarker measures between the NC, TM, and CY groups. While both the CY and TM groups were found to have similarly elevated Aß compared to NC, TM carriers had greater cognitive impairment, smaller hippocampal volume, and elevated phosphorylated tau levels across the spectrum of pre-symptomatic and symptomatic phases of disease as compared to CY, using both cross-sectional and longitudinal data. As distinct portions of PSEN1 are differentially involved in APP processing by γ-secretase and the generation of toxic ß-amyloid species, these results have important implications for understanding the pathobiology of ADAD and accounting for a substantial portion of the interindividual heterogeneity in ongoing ADAD clinical trials.


Sujet(s)
Maladie d'Alzheimer , Préséniline-1 , Humains , Mâle , Femelle , Adulte , Encéphale/métabolisme , Encéphale/anatomopathologie , Tomographie par émission de positons , Imagerie par résonance magnétique , Préséniline-1/composition chimique , Préséniline-1/génétique , Préséniline-1/métabolisme , Mutation , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Cognition , Peptides bêta-amyloïdes/métabolisme , Protéines tau/métabolisme , Études longitudinales , Études transversales , Marqueurs biologiques
13.
Front Psychiatry ; 14: 1165262, 2023.
Article de Anglais | MEDLINE | ID: mdl-37168087

RÉSUMÉ

Introduction: Dementia is characterized by significant declines in cognitive, physical, social, and behavioral functioning, and includes multiple subtypes that differ in etiology. There is limited evidence of the influence of psychiatric and substance use history on the risk of dementia subtypes among older underrepresented racial/ethnic minorities in the United States. Our study explored the role of psychiatric and substance use history on the risk of etiology-specific dementias: Alzheimer's disease (AD) and vascular dementia (VaD), in the context of a racially and ethnically diverse sample based on national data. Methods: We conducted secondary data analyses based on the National Alzheimer's Coordinating Center Uniform Data Set (N = 17,592) which is comprised a large, racially, and ethnically diverse cohort of adult research participants in the network of US Alzheimer Disease Research Centers (ADRCs). From 2005 to 2019, participants were assessed for history of five psychiatric and substance use disorders (depression, traumatic brain injury, other psychiatric disorders, alcohol use, and other substance use). Cox proportional hazard models were used to examine the influence of psychiatric and substance use history on the risk of AD and VaD subtypes, and the interactions between psychiatric and substance use history and race/ethnicity with adjustment for demographic and health-related factors. Results: In addition to other substance use, having any one type of psychiatric and substance use history increased the risk of developing AD by 22-51% and VaD by 22-53%. The risk of other psychiatric disorders on AD and VaD risk varied by race/ethnicity. For non-Hispanic White people, history of other psychiatric disorders increased AD risk by 27%, and VaD risk by 116%. For African Americans, AD risk increased by 28% and VaD risk increased by 108% when other psychiatric disorder history was present. Conclusion: The findings indicate that having psychiatric and substance use history increases the risk of developing AD and VaD in later life. Preventing the onset and recurrence of such disorders may prevent or delay the onset of AD and VaD dementia subtypes. Prevention efforts should pay particular attention to non-Hispanic White and African American older adults who have history of other psychiatric disorders.Future research should address diagnostic shortcomings in the measurement of such disorders in ADRCs, especially with regard to diverse racial and ethnic groups.

14.
Brain Commun ; 5(2): fcad030, 2023.
Article de Anglais | MEDLINE | ID: mdl-36895955

RÉSUMÉ

Spastic paraparesis has been described to occur in 13.7% of PSEN1 mutations and can be the presenting feature in 7.5%. In this paper, we describe a family with a particularly young onset of spastic paraparesis due to a novel mutation in PSEN1 (F388S). Three affected brothers underwent comprehensive imaging protocols, two underwent ophthalmological evaluations and one underwent neuropathological examination after his death at age 29. Age of onset was consistently at age 23 with spastic paraparesis, dysarthria and bradyphrenia. Pseudobulbar affect followed with progressive gait problems leading to loss of ambulation in the late 20s. Cerebrospinal fluid levels of amyloid-ß, tau and phosphorylated tau and florbetaben PET were consistent with Alzheimer's disease. Flortaucipir PET showed an uptake pattern atypical for Alzheimer's disease, with disproportionate signal in posterior brain areas. Diffusion tensor imaging showed decreased mean diffusivity in widespread areas of white matter but particularly in areas underlying the peri-Rolandic cortex and in the corticospinal tracts. These changes were more severe than those found in carriers of another PSEN1 mutation, which can cause spastic paraparesis at a later age (A431E), which were in turn more severe than among persons carrying autosomal dominant Alzheimer's disease mutations not causing spastic paraparesis. Neuropathological examination confirmed the presence of cotton wool plaques previously described in association with spastic parapresis and pallor and microgliosis in the corticospinal tract with severe amyloid-ß pathology in motor cortex but without unequivocal disproportionate neuronal loss or tau pathology. In vitro modelling of the effects of the mutation demonstrated increased production of longer length amyloid-ß peptides relative to shorter that predicted the young age of onset. In this paper, we provide imaging and neuropathological characterization of an extreme form of spastic paraparesis occurring in association with autosomal dominant Alzheimer's disease, demonstrating robust diffusion and pathological abnormalities in white matter. That the amyloid-ß profiles produced predicted the young age of onset suggests an amyloid-driven aetiology though the link between this and the white matter pathology remains undefined.

15.
Proc Natl Acad Sci U S A ; 120(13): e2205448120, 2023 03 28.
Article de Anglais | MEDLINE | ID: mdl-36940322

RÉSUMÉ

Little is known about brain aging or dementia in nonindustrialized environments that are similar to how humans lived throughout evolutionary history. This paper examines brain volume (BV) in middle and old age among two indigenous South American populations, the Tsimane and Moseten, whose lifestyles and environments diverge from those in high-income nations. With a sample of 1,165 individuals aged 40 to 94, we analyze population differences in cross-sectional rates of decline in BV with age. We also assess the relationships of BV with energy biomarkers and arterial disease and compare them against findings in industrialized contexts. The analyses test three hypotheses derived from an evolutionary model of brain health, which we call the embarrassment of riches (EOR). The model hypothesizes that food energy was positively associated with late life BV in the physically active, food-limited past, but excess body mass and adiposity are now associated with reduced BV in industrialized societies in middle and older ages. We find that the relationship of BV with both non-HDL cholesterol and body mass index is curvilinear, positive from the lowest values to 1.4 to 1.6 SDs above the mean, and negative from that value to the highest values. The more acculturated Moseten exhibit a steeper decrease in BV with age than Tsimane, but still shallower than US and European populations. Lastly, aortic arteriosclerosis is associated with lower BV. Complemented by findings from the United States and Europe, our results are consistent with the EOR model, with implications for interventions to improve brain health.


Sujet(s)
Vieillissement , Système cardiovasculaire , Humains , États-Unis , Études transversales , Encéphale , Amérique du Sud
16.
Res Sq ; 2023 Mar 07.
Article de Anglais | MEDLINE | ID: mdl-36945439

RÉSUMÉ

Resting-state functional connectivity (FC) is suggested to be cross-sectionally associated with both vascular burden and Alzheimer's disease (AD) pathology. For instance, studies in pre-clinical AD subjects have shown increases of cerebral spinal fluid soluble platelet-derived growth factor receptor-ß (CSF sPDGFRß, a marker of BBB breakdown) but have not demonstrated if this vascular impairment affects neuronal dysfunction. It's possible that increased levels of sPDGFRß in the CSF may correlate with impaired FC in metabolically demanding brain regions (i.e. Default Mode Network, DMN). Our study aimed to investigate the relationship between these two markers in older individuals that were cognitively normal and had cognitive impairment. Eighty-nine older adults without dementia from the University of Southern California were selected from a larger cohort. Region of interest (ROI) to ROI analyses were conducted using DMN seed regions. Linear regression models measured significant associations between BOLD FC strength among seed-target regions and sPDGFRß values, while covarying for age and sex. Comparison of a composite ROI created by averaging FC values between seed and all target regions among cognitively normal and impaired individuals was also examined. Using CSF sPDGFRß as a biomarker of BBB breakdown, we report that increased breakdown correlated with decreased functional connectivity in DMN areas, specifically the PCC while the hippocampus exhibited an interaction effect using CDR score. We conclude that BBB breakdown as measured by CSF sPDGFRß affects neural networks resulting in decreased functional connections that leads to cognitive dysfunction.

17.
Neuroimage Clin ; 38: 103383, 2023.
Article de Anglais | MEDLINE | ID: mdl-36965457

RÉSUMÉ

White matter hyperintensities (WMHs) frequently occur in Alzheimer's Disease (AD) and have a contribution from ischemia, though their relationship with ß-amyloid and cardiovascular risk factors (CVRFs) is not completely understood. We used AT classification to categorize individuals based on their ß-amyloid and tau pathologies, then assessed the effects of ß-amyloid and tau on WMH volume and number. We then determined regions in which ß-amyloid and WMH accumulation were related. Last, we analyzed the effects of various CVRFs on WMHs. As secondary analyses, we observed effects of age and sex differences, atrophy, cognitive scores, and APOE genotype. PET, MRI, FLAIR, demographic, and cardiovascular health data was collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI-3) (N = 287, 48 % male). Participants were categorized as A + and T + if their Florbetapir SUVR and Flortaucipir SUVR were above 0.79 and 1.25, respectively. WMHs were mapped on MRI using a deep convolutional neural network (Sepehrband et al., 2020). CVRF scores were based on history of hypertension, systolic and diastolic blood pressure, pulse rate, respiration rate, BMI, and a cumulative score with 6 being the maximum score. Regression models and Pearson correlations were used to test associations and correlations between variables, respectively, with age, sex, years of education, and scanner manufacturer as covariates of no interest. WMH volume percent was significantly associated with global ß-amyloid (r = 0.28, p < 0.001), but not tau (r = 0.05, p = 0.25). WMH volume percent was higher in individuals with either A + or T + pathology compared to controls, particularly within in the A+/T + group (p = 0.007, Cohen's d = 0.4, t = -2.5). Individual CVRFs nor cumulative CVRF scores were associated with increased WMH volume. Finally, the regions where ß-amyloid and WMH count were most positively associated were the middle temporal region in the right hemisphere (r = 0.18, p = 0.002) and the fusiform region in the left hemisphere (r = 0.017, p = 0.005). ß-amyloid and WMH have a clear association, though the mechanism facilitating this association is still not fully understood. The associations found between ß-amyloid and WMH burden emphasizes the relationship between ß-amyloid and vascular lesion formation while factors like CVRFs, age, and sex affect AD development through various mechanisms. These findings highlight potential causes and mechanisms of AD as targets for future preventions and treatments. Going forward, a larger emphasis may be placed on ß-amyloid's vascular effects and the implications of impaired brain clearance in AD.


Sujet(s)
Maladie d'Alzheimer , Dysfonctionnement cognitif , Substance blanche , Humains , Mâle , Femelle , Maladie d'Alzheimer/anatomopathologie , Substance blanche/anatomopathologie , Protéines tau/métabolisme , Dysfonctionnement cognitif/anatomopathologie , Peptides bêta-amyloïdes/métabolisme , Protéines amyloïdogènes , Amyloïde
18.
Neuroimage Clin ; 37: 103318, 2023.
Article de Anglais | MEDLINE | ID: mdl-36630864

RÉSUMÉ

The dentate gyrus (DG) is an integral portion of the hippocampal formation, and it is composed of three layers. Quantitative magnetic resonance (MR) imaging has the capability to map brain tissue microstructural properties which can be exploited to investigate neurodegeneration in Alzheimer's disease (AD). However, assessing subtle pathological changes within layers requires high resolution imaging and histological validation. In this study, we utilized a 16.4 Tesla scanner to acquire ex vivo multi-parameter quantitative MRI measures in human specimens across the layers of the DG. Using quantitative diffusion tensor imaging (DTI) and multi-parameter MR measurements acquired from AD (N = 4) and cognitively normal control (N = 6) tissues, we performed correlation analyses with histological measurements. Here, we found that quantitative MRI measures were significantly correlated with neurofilament and phosphorylated Tau density, suggesting sensitivity to layer-specific changes in the DG of AD tissues.


Sujet(s)
Maladie d'Alzheimer , Imagerie par tenseur de diffusion , Humains , Imagerie par tenseur de diffusion/méthodes , Maladie d'Alzheimer/imagerie diagnostique , Maladie d'Alzheimer/anatomopathologie , Imagerie par résonance magnétique/méthodes , Encéphale/anatomopathologie , Hippocampe/imagerie diagnostique , Hippocampe/anatomopathologie , Gyrus denté/imagerie diagnostique , Gyrus denté/anatomopathologie
19.
Alzheimers Dement ; 19(1): 44-55, 2023 01.
Article de Anglais | MEDLINE | ID: mdl-35262289

RÉSUMÉ

INTRODUCTION: We evaluated the prevalence of dementia and mild cognitive impairment (MCI) in indigenous Tsimane and Moseten, who lead a subsistence lifestyle. METHODS: Participants from population-based samples ≥ 60 years of age (n = 623) were assessed using adapted versions of the Modified Mini-Mental State Examination, informant interview, longitudinal cognitive testing and brain computed tomography (CT) scans. RESULTS: Tsimane exhibited five cases of dementia (among n = 435; crude prevalence = 1.2%, 95% confidence interval [CI]: 0.4, 2.7); Moseten exhibited one case (among n = 169; crude prevalence = 0.6%, 95% CI: 0.0, 3.2), all age ≥ 80 years. Age-standardized MCI prevalence was 7.7% (95% CI: 5.2, 10.3) in Tsimane and 9.8% (95% CI: 4.9, 14.6) in Moseten. Cognitive impairment was associated with visuospatial impairments, parkinsonian symptoms, and vascular calcification in the basal ganglia. DISCUSSION: The prevalence of dementia in this cohort is among the lowest in the world. Widespread intracranial medial arterial calcifications suggest a previously unrecognized, non-Alzheimer's disease (AD) dementia phenotype.


Sujet(s)
Maladie d'Alzheimer , Dysfonctionnement cognitif , Démence , Humains , Prévalence , Bolivie/épidémiologie , Dysfonctionnement cognitif/imagerie diagnostique , Dysfonctionnement cognitif/épidémiologie , Dysfonctionnement cognitif/complications , Neuroimagerie , Démence/imagerie diagnostique , Démence/épidémiologie , Démence/complications , Maladie d'Alzheimer/épidémiologie , Évolution de la maladie
20.
Alzheimers Dement ; 19(5): 1785-1799, 2023 05.
Article de Anglais | MEDLINE | ID: mdl-36251323

RÉSUMÉ

INTRODUCTION: The identification of multiple genetic risk factors for Alzheimer's disease (AD) suggests that many pathways contribute to AD onset and progression. However, the metabolomic and lipidomic profiles in carriers of distinct genetic risk factors are not fully understood. The metabolome can provide a direct image of dysregulated pathways in the brain. METHODS: We interrogated metabolomic signatures in the AD brain, including carriers of pathogenic variants in APP, PSEN1, and PSEN2 (autosomal dominant AD; ADAD), APOE ɛ4, and TREM2 risk variant carriers, and sporadic AD (sAD). RESULTS: We identified 133 unique and shared metabolites associated with ADAD, TREM2, and sAD. We identified a signature of 16 metabolites significantly altered between groups and associated with AD duration. DISCUSSION: AD genetic variants show distinct metabolic perturbations. Investigation of these metabolites may provide greater insight into the etiology of AD and its impact on clinical presentation. HIGHLIGHTS: APP/PSEN1/PSEN2 and TREM2 variant carriers show distinct metabolic changes. A total of 133 metabolites were differentially abundant in AD genetic groups. ß-citrylglutamate is differentially abundant in autosomal dominant, TREM2, and sporadic AD. A 16-metabolite profile shows differences between Alzheimer's disease (AD) genetic groups. The identified metabolic profile is associated with duration of disease.


Sujet(s)
Maladie d'Alzheimer , Humains , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/anatomopathologie , Précurseur de la protéine bêta-amyloïde/génétique , Encéphale/anatomopathologie , Hétérozygote , Lipidomique , Mutation , Préséniline-1/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE