Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nature ; 620(7975): 881-889, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37558878

RÉSUMÉ

Dendritic cells (DCs) have a role in the development and activation of self-reactive pathogenic T cells1,2. Genetic variants that are associated with the function of DCs have been linked to autoimmune disorders3,4, and DCs are therefore attractive therapeutic targets for such diseases. However, developing DC-targeted therapies for autoimmunity requires identification of the mechanisms that regulate DC function. Here, using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies, we identify a regulatory loop of negative feedback that operates in DCs to limit immunopathology. Specifically, we find that lactate, produced by activated DCs and other immune cells, boosts the expression of NDUFA4L2 through a mechanism mediated by hypoxia-inducible factor 1α (HIF-1α). NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs that are involved in the control of pathogenic autoimmune T cells. We also engineer a probiotic that produces lactate and suppresses T cell autoimmunity through the activation of HIF-1α-NDUFA4L2 signalling in DCs. In summary, we identify an immunometabolic pathway that regulates DC function, and develop a synthetic probiotic for its therapeutic activation.


Sujet(s)
Maladies auto-immunes , Système nerveux central , Cellules dendritiques , Sous-unité alpha du facteur-1 induit par l'hypoxie , Acide lactique , Humains , Maladies auto-immunes/immunologie , Maladies auto-immunes/métabolisme , Maladies auto-immunes/prévention et contrôle , Auto-immunité , Système nerveux central/cytologie , Système nerveux central/immunologie , Système nerveux central/anatomopathologie , Cellules dendritiques/immunologie , Cellules dendritiques/métabolisme , Sous-unité alpha du facteur-1 induit par l'hypoxie/composition chimique , Sous-unité alpha du facteur-1 induit par l'hypoxie/génétique , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Acide lactique/métabolisme , Probiotiques/usage thérapeutique , Espèces réactives de l'oxygène/métabolisme , Lymphocytes T/immunologie , Rétrocontrôle physiologique , Lactase/génétique , Lactase/métabolisme , Analyse sur cellule unique
2.
Science ; 379(6636): 1023-1030, 2023 03 10.
Article de Anglais | MEDLINE | ID: mdl-36893254

RÉSUMÉ

Cell-cell interactions in the central nervous system play important roles in neurologic diseases. However, little is known about the specific molecular pathways involved, and methods for their systematic identification are limited. Here, we developed a forward genetic screening platform that combines CRISPR-Cas9 perturbations, cell coculture in picoliter droplets, and microfluidic-based fluorescence-activated droplet sorting to identify mechanisms of cell-cell communication. We used SPEAC-seq (systematic perturbation of encapsulated associated cells followed by sequencing), in combination with in vivo genetic perturbations, to identify microglia-produced amphiregulin as a suppressor of disease-promoting astrocyte responses in multiple sclerosis preclinical models and clinical samples. Thus, SPEAC-seq enables the high-throughput systematic identification of cell-cell communication mechanisms.


Sujet(s)
Amphiréguline , Astrocytes , Communication autocrine , Dépistage génétique , Techniques d'analyse microfluidique , Microglie , Astrocytes/physiologie , Dépistage génétique/méthodes , Tests de criblage à haut débit , Techniques d'analyse microfluidique/méthodes , Microglie/physiologie , Amphiréguline/génétique , Communication autocrine/génétique , Expression des gènes , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...