Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nature ; 629(8010): 105-113, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38632407

RÉSUMÉ

Arctic and alpine tundra ecosystems are large reservoirs of organic carbon1,2. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere3,4. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain5-7. This hampers the accuracy of global land carbon-climate feedback projections7,8. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9-2.0 °C] in air and 0.4 °C [CI 0.2-0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22-38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.


Sujet(s)
Respiration cellulaire , Écosystème , Réchauffement de la planète , Toundra , Régions arctiques , Carbone/métabolisme , Carbone/analyse , Cycle du carbone , Jeux de données comme sujet , Concentration en ions d'hydrogène , Azote/métabolisme , Azote/analyse , Plantes/métabolisme , Saisons , Sol/composition chimique , Microbiologie du sol , Température , Facteurs temps
2.
Science ; 339(6127): 1615-8, 2013 Mar 29.
Article de Anglais | MEDLINE | ID: mdl-23539604

RÉSUMÉ

Boreal forest soils function as a terrestrial net sink in the global carbon cycle. The prevailing dogma has focused on aboveground plant litter as a principal source of soil organic matter. Using (14)C bomb-carbon modeling, we show that 50 to 70% of stored carbon in a chronosequence of boreal forested islands derives from roots and root-associated microorganisms. Fungal biomarkers indicate impaired degradation and preservation of fungal residues in late successional forests. Furthermore, 454 pyrosequencing of molecular barcodes, in conjunction with stable isotope analyses, highlights root-associated fungi as important regulators of ecosystem carbon dynamics. Our results suggest an alternative mechanism for the accumulation of organic matter in boreal forests during succession in the long-term absence of disturbance.


Sujet(s)
Cycle du carbone , Champignons/métabolisme , Racines de plante/métabolisme , Racines de plante/microbiologie , Arbres/métabolisme , Arbres/microbiologie , Marqueurs biologiques/métabolisme , Radio-isotopes du carbone/métabolisme , Ergostérol/métabolisme , Glucosamine/métabolisme , Sol
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...