Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Science ; 377(6614): 1513-1519, 2022 09 30.
Article de Anglais | MEDLINE | ID: mdl-36007094

RÉSUMÉ

The geological units on the floor of Jezero crater, Mars, are part of a wider regional stratigraphy of olivine-rich rocks, which extends well beyond the crater. We investigated the petrology of olivine and carbonate-bearing rocks of the Séítah formation in the floor of Jezero. Using multispectral images and x-ray fluorescence data, acquired by the Perseverance rover, we performed a petrographic analysis of the Bastide and Brac outcrops within this unit. We found that these outcrops are composed of igneous rock, moderately altered by aqueous fluid. The igneous rocks are mainly made of coarse-grained olivine, similar to some martian meteorites. We interpret them as an olivine cumulate, formed by settling and enrichment of olivine through multistage cooling of a thick magma body.

2.
Anal Chim Acta ; 1209: 339837, 2022 May 29.
Article de Anglais | MEDLINE | ID: mdl-35569848

RÉSUMÉ

The SuperCam instrument, onboard the Perseverance rover (Mars 2020 mission) is designed to perform remote analysis on the Martian surface employing several spectroscopic techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman (TRR), Time-Resolved Fluorescence (TRF) and Visible and Infrared (VISIR) reflectance. In addition, SuperCam also acquires high-resolution images using a color remote micro-imager (RMI) as well as sounds with its microphone. SuperCam has three main subsystems, the Mast Unit (MU) where the laser for chemical analysis and collection optics are housed, the Body Unit (BU) where the different spectrometers are located inside the rover, and the SuperCam Calibration Target (SCCT) located on the rover's deck to facilitate calibration tests at similar ambient conditions as the analyzed samples. To perform adequate calibrations on Mars, the 22 mineral samples included in the complex SCCT assembly must have a very homogeneous distribution of major and minor elements. The analysis and verification of such homogeneity for the 5-6 replicates of the samples included in the SCCT has been the aim of this work. To verify the physic-chemical homogeneity of the calibration targets, micro Energy Dispersive X-ray Fluorescence (EDXRF) imaging was first used on the whole surface of the targets, then the relative abundances of the detected elements were computed on 20 randomly distributed areas of 100 × 100 µm. For those targets showing a positive Raman response, micro-Raman spectroscopy imaging was performed on the whole surface of the targets at a resolution of 100 × 100 µm. The %RSD values (percent of relative standard deviation of mean values) for the major elements measured with EDXRF were compared with similar values obtained by two independent LIBS set-ups at spot sizes of 300 µm in diameter. The statistical analysis showed which elements were homogeneously distributed in the 22 mineral targets of the SCCT, providing their uncertainty values for further calibration. Moreover, nine of the 22 targets showed a good Raman response and their mineral distributions were also studied. Those targets can be also used for calibration purposes of the Raman part of SuperCam using the wavenumbers of their main Raman bands proposed in this work.


Sujet(s)
Environnement extraterrestre , Mars , Calibrage , Environnement extraterrestre/composition chimique , Minéraux/analyse , Analyse spectrale Raman/méthodes
3.
J Geophys Res Planets ; 126(11): e2021JE006898, 2021 Nov.
Article de Anglais | MEDLINE | ID: mdl-34824965

RÉSUMÉ

Carbonate minerals have been detected in Jezero crater, an ancient lake basin that is the landing site of the Mars 2020 Perseverance rover, and within the regional olivine-bearing (ROB) unit in the Nili Fossae region surrounding this crater. It has been suggested that some carbonates in the margin fractured unit, a rock unit within Jezero crater, formed in a fluviolacustrine environment, which would be conducive to preservation of biosignatures from paleolake-inhabiting lifeforms. Here, we show that carbonate-bearing rocks within and outside of Jezero crater have the same range of visible-to-near-infrared carbonate absorption strengths, carbonate absorption band positions, thermal inertias, and morphologies. Thicknesses of exposed carbonate-bearing rock cross-sections in Jezero crater are ∼75-90 m thicker than typical ROB unit cross-sections in the Nili Fossae region, but have similar thicknesses to ROB unit exposures in Libya Montes. These similarities in carbonate properties within and outside of Jezero crater is consistent with a shared origin for all of the carbonates in the Nili Fossae region. Carbonate absorption minima positions indicate that both Mg- and more Fe-rich carbonates are present in the Nili Fossae region, consistent with the expected products of olivine carbonation. These estimated carbonate chemistries are similar to those in martian meteorites and the Comanche carbonates investigated by the Spirit rover in Columbia Hills. Our results indicate that hydrothermal alteration is the most likely formation mechanism for non-deltaic carbonates within and outside of Jezero crater.

4.
Nature ; 598(7879): 49-52, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-34616055

RÉSUMÉ

Spacecraft missions have observed regolith blankets of unconsolidated subcentimetre particles on stony asteroids1-3. Telescopic data have suggested the presence of regolith blankets also on carbonaceous asteroids, including (101955) Bennu4 and (162173) Ryugu5. However, despite observations of processes that are capable of comminuting boulders into unconsolidated materials, such as meteoroid bombardment6,7 and thermal cracking8, Bennu and Ryugu lack extensive areas covered in subcentimetre particles7,9. Here we report an inverse correlation between the local abundance of subcentimetre particles and the porosity of rocks on Bennu. We interpret this finding to mean that accumulation of unconsolidated subcentimetre particles is frustrated where the rocks are highly porous, which appears to be most of the surface10. The highly porous rocks are compressed rather than fragmented by meteoroid impacts, consistent with laboratory experiments11,12, and thermal cracking proceeds more slowly than in denser rocks. We infer that regolith blankets are uncommon on carbonaceous asteroids, which are the most numerous type of asteroid13. By contrast, these terrains should be common on stony asteroids, which have less porous rocks and are the second-most populous group by composition13. The higher porosity of carbonaceous asteroid materials may have aided in their compaction and cementation to form breccias, which dominate the carbonaceous chondrite meteorites14.

5.
Space Sci Rev ; 217(2): 29, 2021.
Article de Anglais | MEDLINE | ID: mdl-33678912

RÉSUMÉ

The NASA Perseverance rover Mast Camera Zoom (Mastcam-Z) system is a pair of zoomable, focusable, multi-spectral, and color charge-coupled device (CCD) cameras mounted on top of a 1.7 m Remote Sensing Mast, along with associated electronics and two calibration targets. The cameras contain identical optical assemblies that can range in focal length from 26 mm ( 25.5 ∘ × 19.1 ∘ FOV ) to 110 mm ( 6.2 ∘ × 4.2 ∘ FOV ) and will acquire data at pixel scales of 148-540 µm at a range of 2 m and 7.4-27 cm at 1 km. The cameras are mounted on the rover's mast with a stereo baseline of 24.3 ± 0.1  cm and a toe-in angle of 1.17 ± 0.03 ∘ (per camera). Each camera uses a Kodak KAI-2020 CCD with 1600 × 1200 active pixels and an 8 position filter wheel that contains an IR-cutoff filter for color imaging through the detectors' Bayer-pattern filters, a neutral density (ND) solar filter for imaging the sun, and 6 narrow-band geology filters (16 total filters). An associated Digital Electronics Assembly provides command data interfaces to the rover, 11-to-8 bit companding, and JPEG compression capabilities. Herein, we describe pre-flight calibration of the Mastcam-Z instrument and characterize its radiometric and geometric behavior. Between April 26 t h and May 9 t h , 2019, ∼45,000 images were acquired during stand-alone calibration at Malin Space Science Systems (MSSS) in San Diego, CA. Additional data were acquired during Assembly Test and Launch Operations (ATLO) at the Jet Propulsion Laboratory and Kennedy Space Center. Results of the radiometric calibration validate a 5% absolute radiometric accuracy when using camera state parameters investigated during testing. When observing using camera state parameters not interrogated during calibration (e.g., non-canonical zoom positions), we conservatively estimate the absolute uncertainty to be < 10 % . Image quality, measured via the amplitude of the Modulation Transfer Function (MTF) at Nyquist sampling (0.35 line pairs per pixel), shows MTF Nyquist = 0.26 - 0.50 across all zoom, focus, and filter positions, exceeding the > 0.2 design requirement. We discuss lessons learned from calibration and suggest tactical strategies that will optimize the quality of science data acquired during operation at Mars. While most results matched expectations, some surprises were discovered, such as a strong wavelength and temperature dependence on the radiometric coefficients and a scene-dependent dynamic component to the zero-exposure bias frames. Calibration results and derived accuracies were validated using a Geoboard target consisting of well-characterized geologic samples. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11214-021-00795-x.

6.
Space Sci Rev ; 217(1): 24, 2021.
Article de Anglais | MEDLINE | ID: mdl-33612866

RÉSUMÉ

Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission's Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 µrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 µrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover's Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover's traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover's sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions.

7.
Space Sci Rev ; 216(8): 138, 2020.
Article de Anglais | MEDLINE | ID: mdl-33281235

RÉSUMÉ

SuperCam is a highly integrated remote-sensing instrumental suite for NASA's Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover. The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated. The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and evaluate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental conditions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam system.

8.
Science ; 370(6517)2020 11 06.
Article de Anglais | MEDLINE | ID: mdl-33033157

RÉSUMÉ

Visible-wavelength color and reflectance provide information about the geologic history of planetary surfaces. Here we present multispectral images (0.44 to 0.89 micrometers) of near-Earth asteroid (101955) Bennu. The surface has variable colors overlain on a moderately blue global terrain. Two primary boulder types are distinguishable by their reflectance and texture. Space weathering of Bennu surface materials does not simply progress from red to blue (or vice versa). Instead, freshly exposed, redder surfaces initially brighten in the near-ultraviolet region (i.e., become bluer at shorter wavelengths), then brighten in the visible to near-infrared region, leading to Bennu's moderately blue average color. Craters indicate that the time scale of these color changes is ~105 years. We attribute the reflectance and color variation to a combination of primordial heterogeneity and varying exposure ages.

9.
Nat Astron ; 3(4): 332-340, 2019.
Article de Anglais | MEDLINE | ID: mdl-31360777

RÉSUMÉ

Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 µm and thermal infrared spectral features that are most similar to those of aqueously altered CM carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of meters observed to date. In the visible and near-infrared (0.4 to 2.4 µm) Bennu's spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth.

10.
Nature ; 528(7581): 237-40, 2015 Dec 10.
Article de Anglais | MEDLINE | ID: mdl-26659183

RÉSUMÉ

The dwarf planet (1) Ceres, the largest object in the main asteroid belt with a mean diameter of about 950 kilometres, is located at a mean distance from the Sun of about 2.8 astronomical units (one astronomical unit is the Earth-Sun distance). Thermal evolution models suggest that it is a differentiated body with potential geological activity. Unlike on the icy satellites of Jupiter and Saturn, where tidal forces are responsible for spewing briny water into space, no tidal forces are acting on Ceres. In the absence of such forces, most objects in the main asteroid belt are expected to be geologically inert. The recent discovery of water vapour absorption near Ceres and previous detection of bound water and OH near and on Ceres (refs 5-7) have raised interest in the possible presence of surface ice. Here we report the presence of localized bright areas on Ceres from an orbiting imager. These unusual areas are consistent with hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Of particular interest is a bright pit on the floor of crater Occator that exhibits probable sublimation of water ice, producing haze clouds inside the crater that appear and disappear with a diurnal rhythm. Slow-moving condensed-ice or dust particles may explain this haze. We conclude that Ceres must have accreted material from beyond the 'snow line', which is the distance from the Sun at which water molecules condense.

11.
Geobiology ; 12(6): 542-56, 2014 Nov.
Article de Anglais | MEDLINE | ID: mdl-25256888

RÉSUMÉ

Precipitation of calcium carbonate (CaCO3(s) ) can be driven by microbial activity. Here, a systematic approach is used to identify the morphological and mineralogical characteristics of CaCO3(s) precipitated during the heterotrophic growth of micro-organisms isolated from polar environments. Focus was placed on establishing mineralogical features that are common in bioliths formed during heterotrophic activity, while in parallel identifying features that are specific to bioliths precipitated by certain microbial phylotypes. Twenty microbial isolates that precipitated macroscopic CaCO3(s) when grown on B4 media supplemented with calcium acetate or calcium citrate were identified. A multimethod approach, including scanning electron microscopy, high-resolution transmission electron microscopy, and micro-X-ray diffraction (µ-XRD), was used to characterize CaCO3(s) precipitates. Scanning and transmission electron microscopy showed that complete CaCO3(s) crystal encrustation of Arthrobacter sp. cells was common, while encrustation of Rhodococcus sp. cells did not occur. Several euhedral and anhedral mineral formations including disphenoid-like epitaxial plates, rhomboid-like aggregates with epitaxial rhombs, and spherulite aggregates were observed. While phylotype could not be linked to specific mineral formations, isolates tended to precipitate either euhedral or anhedral minerals, but not both. Three anhydrous CaCO3(s) polymorphs (calcite, aragonite, and vaterite) were identified by µ-XRD, and calcite and aragonite were also identified based on TEM lattice-fringe d value measurements. The presence of certain polymorphs was not indicative of biogenic origin, although several mineralogical features such as crystal-encrusted bacterial cells, or casts of bacterial cells embedded in mesocrystals are an indication of biogenic origin. In addition, some features such as the formation of vaterite and bacterial entombment appear to be linked to certain phylotypes. Identifying phylotypes consistent with certain mineralogical features is the first step toward discovering a link between these crystal features and the precise underlying molecular biology of the organism precipitating them.


Sujet(s)
Bactéries/métabolisme , Carbonate de calcium/composition chimique , Précipitation chimique , Cristallisation , Microscopie électronique à balayage , Diffraction des rayons X
12.
Talanta ; 63(3): 609-16, 2004 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-18969477

RÉSUMÉ

The use of a sampling technique is described for the identification of metals from inorganic pigments in paint. The sampling technique involves gently contacting a cotton swab with the painted surface to physically remove a minute quantity ( approximately 1-2mug) of pigment. The amount of material removed from the painted surface is invisible to the unaided eye and does not cause any visible effect to the painted surface. The cotton swab was then placed in a 1.5ml polystyrene beaker containing HNO(3) to extract pigment metals prior to analysis using graphite furnace atomic absorption spectrometry (GFAAS). GFAAS is well suited for identifying pigment metals since it requires small samples and many pigments consist of main group elements (e.g. Al) as well as transition metals (e.g. Zn, Fe and Cd). Using Cd (cadmium red) as the test element, the reproducibility of sampling a paint surface with the cotton swab was approximately 13% in either a water or oil medium. To test the feasibility of cotton sampling for pigment identification, samples were obtained from paintings (watercolour and oil) of a local collection. Raman spectra provided complementary information to the GFAAS, which together are essential for positive identification of some pigments. For example, GFAAS indicated the presence of Cu, but the Raman spectra positively identified the modern copper pigment phthalocyanine green (Cu(C(32)Cl(16)N(8)). Both Raman spectroscopy and GFAAS were useful for identifying ZnO as a white pigment.

13.
Science ; 245(4914): 165-8, 1989 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-17787874

RÉSUMÉ

The spectral reflectance properties of bituminous tar sands were examined in the wavelength range from 0.35 to 2.6 micrometers. Unique absorption features due to all the major phases, except quartz, appear in the spectra. The intensities of the absorption features correlate with the abundances of the various phases. The results of this study have applications to the remote sensing of many terrestrial and extraterrestrial targets because of potential similarities between tar sand and other hydrocarbon occurrences. For example, it is found that highly polymerized hydrocarbons are a plausible constituent of the dark material on one of Saturn's satellites, Iapetus.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...