Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cell Host Microbe ; 10(6): 591-602, 2011 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-22177563

RÉSUMÉ

During invasion, apicomplexan parasites form an intimate circumferential contact with the host cell, the tight junction (TJ), through which they actively glide. The TJ, which links the parasite motor to the host cell cytoskeleton, is thought to be composed of interacting apical membrane antigen 1 (AMA1) and rhoptry neck (RON) proteins. Here we find that, in Plasmodium berghei, while both AMA1 and RON4 are important for merozoite invasion of erythrocytes, only RON4 is required for sporozoite invasion of hepatocytes, indicating that RON4 acts independently of AMA1 in the sporozoite. Further, in the Toxoplasma gondii tachyzoite, AMA1 is dispensable for normal RON4 ring and functional TJ assembly but enhances tachyzoite apposition to the cell and internalization frequency. We propose that while the RON proteins act at the TJ, AMA1 mainly functions on the zoite surface to permit correct attachment to the cell, which may facilitate invasion depending on the zoite-cell combination.


Sujet(s)
Antigènes de protozoaire/métabolisme , Paludisme/parasitologie , Protéines membranaires/métabolisme , Plasmodium berghei/métabolisme , Protéines de protozoaire/métabolisme , Toxoplasma/métabolisme , Animaux , Anopheles , Antigènes de protozoaire/génétique , Lignée cellulaire , Érythrocytes/parasitologie , Hépatocytes/parasitologie , Interactions hôte-parasite , Humains , Protéines membranaires/génétique , Souris , Souris de lignée C57BL , Plasmodium berghei/génétique , Plasmodium berghei/croissance et développement , Protéines de protozoaire/génétique , Sporozoïtes/métabolisme , Toxoplasma/génétique
2.
Nat Protoc ; 6(9): 1412-28, 2011 Aug 25.
Article de Anglais | MEDLINE | ID: mdl-21886105

RÉSUMÉ

We describe here a highly efficient procedure for conditional mutagenesis in Plasmodium. The procedure uses the site-specific recombination FLP-FRT system of yeast and targets the pre-erythrocytic stages of the rodent Plasmodium parasite P. berghei, including the sporozoite stage and the subsequent liver stage. The technique consists of replacing the gene under study by an FRTed copy (i.e., flanked by FRT sites) in the erythrocytic stages of a parasite clone that expresses the flip (FLP) recombinase stage-specifically--called the 'deleter' clone. We present the available deleter clones, which express FLP at different times of the parasite life cycle, as well as the schemes and tools for constructing new deleter parasites. We also outline and discuss the various strategies for exchanging a wild-type gene with an FRTed copy and for generating conditional gene knockout or knockdown parasite clones. Finally, we detail the protocol for obtaining sporozoites that lack a protein of interest and for monitoring sporozoite-specific DNA excision and depletion of the target protein. The protocol should allow the functional analysis of any essential protein in the sporozoite, liver stage or hepatic merozoite stages of rodent Plasmodium parasites.


Sujet(s)
Génie génétique/méthodes , Mutagenèse dirigée/méthodes , Plasmodium berghei/génétique , Animaux , Anopheles/parasitologie , Techniques de knock-out de gènes , Souris , Rats , Rat Wistar , Recombinaison génétique , Sporozoïtes/physiologie
3.
J Biol Chem ; 285(5): 3282-8, 2010 Jan 29.
Article de Anglais | MEDLINE | ID: mdl-19940133

RÉSUMÉ

The liver is the first organ infected by Plasmodium sporozoites during malaria infection. In the infected hepatocytes, sporozoites undergo a complex developmental program to eventually generate hepatic merozoites that are released into the bloodstream in membrane-bound vesicles termed merosomes. Parasites blocked at an early developmental stage inside hepatocytes elicit a protective host immune response, making them attractive targets in the effort to develop a pre-erythrocytic stage vaccine. Here, we generated parasites blocked at a late developmental stage inside hepatocytes by conditionally disrupting the Plasmodium berghei cGMP-dependent protein kinase in sporozoites. Mutant sporozoites are able to invade hepatocytes and undergo intracellular development. However, they remain blocked as late liver stages that do not release merosomes into the medium. These late arrested liver stages induce protection in immunized animals. This suggests that, similar to the well studied early liver stages, late stage liver stages too can confer protection from sporozoite challenge.


Sujet(s)
Cyclic GMP-Dependent Protein Kinases/métabolisme , Hépatocytes/parasitologie , Foie/parasitologie , Plasmodium berghei/métabolisme , Animaux , Anopheles , Femelle , Régulation de l'expression des gènes au cours du développement , Hépatocytes/métabolisme , Humains , Foie/métabolisme , Vaccins contre le paludisme , Souris , Souris de lignée C57BL , Modèles biologiques , Mutation , Facteurs temps
4.
Cell Host Microbe ; 5(4): 386-96, 2009 Apr 23.
Article de Anglais | MEDLINE | ID: mdl-19380117

RÉSUMÉ

We describe here an efficient method for conditional gene inactivation in malaria parasites that uses the Flp/FRT site-specific recombination system of yeast. The method, developed in Plasmodium berghei, consists of inserting FRT sites in the chromosomal locus of interest in a parasite clone expressing the Flp recombinase via a developmental stage-specific promoter. Using promoters active in mosquito midgut sporozoites or salivary gland sporozoites to drive expression of Flp or its thermolabile variant, FlpL, we show that excision of the DNA flanked by FRT sites occurs efficiently at the stage of interest and at undetectable levels in prior stages. We applied this technique to conditionally silence MSP1, a gene essential for merozoite invasion of erythrocytes. Silencing MSP1 in sporozoites impaired subsequent merozoite formation in the liver. Therefore, MSP1 plays a dual role in the parasite life cycle, acting both in liver and erythrocytic parasite stages.


Sujet(s)
Délétion de gène , Biologie moléculaire/méthodes , Mutagenèse , Plasmodium berghei/génétique , Animaux , DNA nucleotidyltransferases/génétique , DNA nucleotidyltransferases/métabolisme , Recombinaison génétique
5.
Cell Host Microbe ; 5(3): 259-72, 2009 Mar 19.
Article de Anglais | MEDLINE | ID: mdl-19286135

RÉSUMÉ

Apicomplexa are obligate intracellular parasites that actively invade host cells using their membrane-associated, actin-myosin motor. The current view is that host cell invasion by Apicomplexa requires the formation of a parasite-host cell junction, which has been termed the moving junction, but does not require the active participation of host actin. Using Toxoplasma gondii tachyzoites and Plasmodium berghei sporozoites, we show that host actin participates in parasite entry. Parasites induce the formation of a ring-shaped F-actin structure in the host cell at the parasite-cell junction, which remains stable during parasite entry. The Arp2/3 complex, an actin-nucleating factor, is recruited at the ring structure and is important for parasite entry. We propose that Apicomplexa invasion of host cells requires not only the parasite motor but also de novo polymerization of host actin at the entry site for anchoring the junction on which the parasite pulls to penetrate the host cell.


Sujet(s)
Actines/métabolisme , Interactions hôte-parasite , Plasmodium berghei/physiologie , Multimérisation de protéines , Toxoplasma/physiologie , Complexe Arp-2-3/analyse , Animaux , Lignée cellulaire , Cytoplasme/composition chimique , Humains
6.
Int J Parasitol ; 39(4): 489-96, 2009 Mar.
Article de Anglais | MEDLINE | ID: mdl-19000911

RÉSUMÉ

The invasive stages of parasites of the protozoan phylum Apicomplexa have the capacity to traverse host tissues and invade host cells using a unique type of locomotion called gliding motility. Gliding motility is powered by a sub-membranous actin-myosin motor, and the force generated by the motor is transduced to the parasite surface by transmembrane proteins of the apicomplexan-specific thrombospondin-related anonymous protein (TRAP) family. These proteins possess short cytoplasmic tails that interact with the actin-myosin motor via the glycolytic enzyme aldolase. Gliding motility of the Plasmodium sporozoite, the stage of the malaria parasite that is transmitted by the mosquito to the mammalian host, depends on the TRAP protein. We describe a second protein, herein termed TREP, which also plays a role in the gliding motility of the Plasmodium sporozoite. TREP is a transmembrane protein that possesses a short cytoplasmic tail typical of members of the TRAP family of proteins, as well as a large extracellular region that contains a single thrombospondin type 1 repeat domain. TREP transcripts are expressed predominantly in oocyst stage sporozoites. Plasmodium berghei sporozoites harbouring a disrupted TREP gene have a highly diminished capacity to invade mosquito salivary glands and display a severe defect in gliding motility. We conclude that the gliding motility of the Plasmodium sporozoite in the mosquito depends on at least two proteins, TRAP and TREP.


Sujet(s)
Délétion de gène , Locomotion , Protéines membranaires/physiologie , Plasmodium berghei/pathogénicité , Protéines de protozoaire/physiologie , Sporozoïtes/physiologie , Animaux , Anopheles/parasitologie , Régulation de l'expression des gènes , Interactions hôte-parasite/génétique , Paludisme/parasitologie , Protéines membranaires/génétique , Souris , Données de séquences moléculaires , Plasmodium berghei/génétique , Plasmodium berghei/croissance et développement , Protéines de protozoaire/génétique , ARN/isolement et purification , Sporozoïtes/métabolisme , Transfection
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE