Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 20
Filtrer
Plus de filtres











Base de données
Gamme d'année
2.
Sci Rep ; 14(1): 7254, 2024 Mar 27.
Article de Anglais | MEDLINE | ID: mdl-38538729

RÉSUMÉ

We applied a perfect prognosis approach to downscale four meteorological variables that affect photovoltaic (PV) power output using four machine learning (ML) algorithms. In addition to commonly investigated variables, such as air temperature and precipitation, we also focused on wind speed and surface solar radiation, which are not frequently examined. The downscaling performance of the four variables followed the order of: temperature > surface solar radiation > wind speed > precipitation. Having assessed the dependence of the downscaling accuracy on the scaling factor, we focused on a super-resolution downscaling. We found that the convolutional neural network (CNN) generally outperformed the other linear and non-linear algorithms. The CNN was further able to reproduce extremes. With the rapid transition from coal to renewables, the need to evaluate low solar output conditions at a regional scale is expected to benefit from CNNs. Because weather affects PV power output in multiple ways, and future climate change will modify meteorological conditions, we focused on obtaining exemplary super-resolution application by evaluating future changes in PV power outputs using climate simulations. Our results confirmed the reliability of the CNN method for producing super-resolution climate scenarios and will enable energy planners to anticipate the effects of future weather variability.

3.
Glob Chang Biol ; 30(1): e17131, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38273508

RÉSUMÉ

Climate warming is expected to increase global methane (CH4 ) emissions from wetland ecosystems. Although in situ eddy covariance (EC) measurements at ecosystem scales can potentially detect CH4 flux changes, most EC systems have only a few years of data collected, so temporal trends in CH4 remain uncertain. Here, we use established drivers to hindcast changes in CH4 fluxes (FCH4 ) since the early 1980s. We trained a machine learning (ML) model on CH4 flux measurements from 22 [methane-producing sites] in wetland, upland, and lake sites of the FLUXNET-CH4 database with at least two full years of measurements across temperate and boreal biomes. The gradient boosting decision tree ML model then hindcasted daily FCH4 over 1981-2018 using meteorological reanalysis data. We found that, mainly driven by rising temperature, half of the sites (n = 11) showed significant increases in annual, seasonal, and extreme FCH4 , with increases in FCH4 of ca. 10% or higher found in the fall from 1981-1989 to 2010-2018. The annual trends were driven by increases during summer and fall, particularly at high-CH4 -emitting fen sites dominated by aerenchymatous plants. We also found that the distribution of days of extremely high FCH4 (defined according to the 95th percentile of the daily FCH4 values over a reference period) have become more frequent during the last four decades and currently account for 10-40% of the total seasonal fluxes. The share of extreme FCH4 days in the total seasonal fluxes was greatest in winter for boreal/taiga sites and in spring for temperate sites, which highlights the increasing importance of the non-growing seasons in annual budgets. Our results shed light on the effects of climate warming on wetlands, which appears to be extending the CH4 emission seasons and boosting extreme emissions.


Sujet(s)
Écosystème , Zones humides , Saisons , Méthane , Dioxyde de carbone
4.
Sci Rep ; 14(1): 1974, 2024 Jan 23.
Article de Anglais | MEDLINE | ID: mdl-38263390

RÉSUMÉ

A string of fierce fires broke out in Chile in the austral summer 2023, just six years after the record-breaking 2017 fire season. Favored by extreme weather conditions, fire activity has dramatically risen in recent years in this Andean country. A total of 1.7 million ha. burned during the last decade, tripling figures of the prior decade. Six of the seven most destructive fire seasons on record occurred since 2014. Here, we analyze the progression during the last two decades of the weather conditions associated with increased fire risk in Central Chile (30°-39° S). Fire weather conditions (including high temperatures, low humidity, dryness, and strong winds) increase the potential for wildfires, once ignited, to rapidly spread. We show that the concurrence of El Niño and climate-fueled droughts and heatwaves boost the local fire risk and have decisively contributed to the intense fire activity recently seen in Central Chile. Our results also suggest that the tropical eastern Pacific Ocean variability modulates the seasonal fire weather in the country, driving in turn the interannual fire activity. The signature of the warm anomalies in the Niño 1 + 2 region (0°-10° S, 90° W-80° W) is apparent on the burned area records seen in Central Chile in 2017 and 2023.

5.
PLoS One ; 18(6): e0286397, 2023.
Article de Anglais | MEDLINE | ID: mdl-37314973

RÉSUMÉ

The angular distribution of the sky radiance determines the energy generation of solar power technologies as well as the ultraviolet (UV) doses delivered to the biosphere. The sky-diffuse radiance distribution depends on the wavelength, the solar elevation, and the atmospheric conditions. Here, we report on ground-based measurements of the all-sky radiance at three sites in the Southern Hemisphere across a transect of about 5,000 km: Santiago (33°S, a mid-latitude city of 6 million inhabitants with endemic poor air quality), King George Island (62°S, at the northern tip of the Antarctic Peninsula, one of the cloudiest regions on Earth), and Union Glacier (79°S, a snow-covered glacier in the vast interior of Western Antarctica). The sites were strategically selected for studying the influence of urban aerosols, frequent and thick clouds, and extremely high albedo on the sky-diffuse radiance distribution. Our results show that, due to changing site-specific atmospheric conditions, the characterization of the weather-driven sky radiance distribution may require ground-based measurements.


Sujet(s)
Climat , Temps (météorologie) , Neige , Régions antarctiques , 32269
6.
Sci Rep ; 13(1): 6726, 2023 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-37185945

RÉSUMÉ

Cities in the global south face dire climate impacts. It is in socioeconomically marginalized urban communities of the global south that the effects of climate change are felt most deeply. Santiago de Chile, a major mid-latitude Andean city of 7.7 million inhabitants, is already undergoing the so-called "climate penalty" as rising temperatures worsen the effects of endemic ground-level ozone pollution. As many cities in the global south, Santiago is highly segregated along socioeconomic lines, which offers an opportunity for studying the effects of concurrent heatwaves and ozone episodes on distinct zones of affluence and deprivation. Here, we combine existing datasets of social indicators and climate-sensitive health risks with weather and air quality observations to study the response to compound heat-ozone extremes of different socioeconomic strata. Attributable to spatial variations in the ground-level ozone burden (heavier for wealthy communities), we found that the mortality response to extreme heat (and the associated further ozone pollution) is stronger in affluent dwellers, regardless of comorbidities and lack of access to health care affecting disadvantaged population. These unexpected findings underline the need of a site-specific hazard assessment and a community-based risk management.

7.
Nat Commun ; 13(1): 984, 2022 02 22.
Article de Anglais | MEDLINE | ID: mdl-35194040

RÉSUMÉ

Black carbon (BC) from fossil fuel and biomass combustion darkens the snow and makes it melt sooner. The BC footprint of research activities and tourism in Antarctica has likely increased as human presence in the continent has surged in recent decades. Here, we report on measurements of the BC concentration in snow samples from 28 sites across a transect of about 2,000 km from the northern tip of Antarctica (62°S) to the southern Ellsworth Mountains (79°S). Our surveys show that BC content in snow surrounding research facilities and popular shore tourist-landing sites is considerably above background levels measured elsewhere in the continent. The resulting radiative forcing is accelerating snow melting and shrinking the snowpack on BC-impacted areas on the Antarctic Peninsula and associated archipelagos by up to 23 mm water equivalent (w.e.) every summer.


Sujet(s)
Empreinte carbone , Surveillance de l'environnement , Régions antarctiques , Carbone/analyse , Humains , Neige , Suie/analyse
8.
Sci Rep ; 12(1): 1266, 2022 01 24.
Article de Anglais | MEDLINE | ID: mdl-35075240

RÉSUMÉ

Attributable to the Montreal Protocol, the most successful environmental treaty ever, human-made ozone-depleting substances are declining and the stratospheric Antarctic ozone layer is recovering. However, the Antarctic ozone hole continues to occur every year, with the severity of ozone loss strongly modulated by meteorological conditions. In late November and early December 2020, we measured at the northern tip of the Antarctic Peninsula the highest ultraviolet (UV) irradiances recorded in the Antarctic continent in more than two decades. On Dec. 2nd, the noon-time UV index on King George Island peaked at 14.3, very close to the largest UV index ever recorded in the continent. On Dec. 3rd, the erythemal daily dose at the same site was among the highest on Earth, only comparable to those recorded at high altitude sites in the Atacama Desert, near the Tropic of Capricorn. Here we show that, despite the Antarctic ozone recovery observed in early spring, the conditions that favor these extreme surface UV events persist in late spring, when the biologically effective UV radiation is more consequential. These conditions include long-lasting ozone holes (attributable to the polar vortex dynamics) that often bring ozone-depleted air over the Antarctic Peninsula in late spring. The fact that these conditions have been occurring at about the same frequency during the last two decades explains the persistence of extreme surface UV events in Antarctica.

9.
Sci Rep ; 11(1): 19564, 2021 10 01.
Article de Anglais | MEDLINE | ID: mdl-34599225

RÉSUMÉ

Summer temperatures are often above freezing along the Antarctic coastline, which makes ice shelves and coastal snowpacks vulnerable to warming events (understood as periods of consecutive days with warmer than usual conditions). Here, we project changes in the frequency, duration and amplitude of summertime warming events expected until end of century according to two emission scenarios. By using both global and regional climate models, we found that these events are expected to be more frequent and last longer, continent-wide. By end of century, the number of warming events is projected to double in most of West Antarctica and to triple in the vast interior of East Antarctica, even under a moderate-emission scenario. We also found that the expected rise of warming events in coastal areas surrounding the continent will likely lead to enhanced surface melt, which may pose a risk for the future stability of several Antarctic ice shelves.

10.
Sci Rep ; 11(1): 19822, 2021 Oct 06.
Article de Anglais | MEDLINE | ID: mdl-34615892

RÉSUMÉ

Surface albedo is an important forcing parameter that drives the radiative energy budget as it determines the fraction of the downwelling solar irradiance that the surface reflects. Here we report on ground-based measurements of the spectral albedo (350-2200 nm) carried out at 20 sites across a North-South transect of approximately 1300 km in the Atacama Desert, from latitude 18° S to latitude 30° S. These spectral measurements were used to evaluate remote sensing estimates of the albedo derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). We found that the relative mean bias error (RMBE) of MODIS-derived estimates was within ± 5% of ground-based measurements in most of the Atacama Desert (18-27° S). Although the correlation between MODIS-derived estimates and ground-based measurements remained relatively high (R= 0.94), RMBE values were slightly larger in the southernmost part of the desert (27-30° S). Both MODIS-derived data and ground-based measurements show that the albedo at some bright spots in the Atacama Desert may be high enough (up to 0.25 in visible range) for considerably boosting the performance of bifacial photovoltaic technologies (6-12%).

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE