Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Nutr Hosp ; 25(3): 350-65, 2010.
Article de Espagnol | MEDLINE | ID: mdl-20593115

RÉSUMÉ

Although iron is an essential mineral for maintaining good health, excessive amounts are toxic. Nowadays, much interest is focused on the mechanisms and regulation of iron metabolism by down-regulation of the hormone hepcidin. The HAMP gene encodes for hepcidin appears to be exceptionally preserved. Disorders of iron metabolism could lead to iron overload, mainly causing the rare disease hereditary hemochromatosis, or on the other hand, iron deficiency and iron deficiency anaemia. Currently, these alterations constitute an important problem of public health. The genetic variation implicated in iron overload and iron deficiency anaemia, involves mutations in several genes such as HFE, TFR2,HAMP, HJV, Tf and TMPRSS6. Iron has the capacity to accept and donate electrons easily and can catalyze reactions of free radicals production. Therefore, iron overload causes lipid peroxidation and increases cardiovascular risk. Recently, a relationship between iron metabolism and insulin resistance and obesity has been described. In contrast, regarding a possible relationship between iron deficiency anaemia and cardiovascular disease, many aspects remain controversial. This review presents an overview of the most recent information concerning iron metabolism, iron bioavailability and iron overload/deficiency related diseases. The relation between iron and cardiovascular risk, in iron overload and in iron deficiency situations, is also examined. Finally, strategies to modify dietary iron bioavailability in order to prevent iron deficiency or alleviate iron overload are suggested.


Sujet(s)
Maladies cardiovasculaires/étiologie , Carences en fer , Surcharge en fer/métabolisme , Stress oxydatif , Biodisponibilité , Humains , Absorption intestinale , Fer/administration et posologie , Fer/métabolisme , Fer/pharmacocinétique , Troubles du métabolisme du fer/complications , Facteurs de risque
2.
Nutr. hosp ; 25(3): 350-365, mayo-jun. 2010. ilus, tab
Article de Espagnol | IBECS | ID: ibc-84712

RÉSUMÉ

El hierro es un metal esencial para la vida, pero en cantidades elevadas resulta tóxico. La regulación del metabolismo del hierro es actualmente un tema de intensa investigación al haberse descrito el papel clave de la hepcidina, hormona cuyo gen HAMP está muy conservado. Las alteraciones del metabolismo del hierro dan lugar a sobrecarga, destacando la hemocromatosis hereditaria clasificada como enfermedad rara, o en el otro extremo deficiencia de hierro y anemia ferropénica que constituyen un problema de Salud Pública de proporciones mundiales. Las variantes genéticas implicadas en sobrecarga y deficiencia de hierro se han centrado en los genes HFE, TFR2, HAMP, HJV, Tf y TMPRSS6. El hierro tiene la capacidad de ceder o donar electrones con facilidad y puede catalizar reacciones vía radicales libres e incrementar el estrés oxidativo. Así, la peroxidación lipídica y riesgo cardiovascular son consecuencias de la sobrecarga de hierro. Recientemente, se ha descrito también una relación entre el metabolismo del hierro y la resistencia a la insulina y la obesidad. Por el contrario, aún existe gran controversia en cuanto a la relación anemia ferropénica-enfermedad cardiovascular. Esta revisión presenta de forma breve los conocimientos actuales sobre la regulación del metabolismo del hierro, su biodisponibilidad y los trastornos por sobrecarga y deficiencia de hierro, para posteriormente examinar las relaciones existentes entre el hierro y el riesgo cardiovascular, tanto en la deficiencia como en la sobrecarga. Finalmente presenta propuestas para desde la nutrición utilizar estrategias para paliar la sobrecarga o prevenir la anemia por falta de hierro (AU)


Although iron is an essential mineral for maintaining good health, excessive amounts are toxic. Nowadays, much interest is focused on the mechanisms and regulation of iron metabolism by down-regulation of the hormone hepcidin. The HAMP gene encodes for hepcidin appears to be exceptionally preserved. Disorders of iron metabolism could lead to iron overload, mainly causing the rare disease hereditary hemochromatosis, or on the other hand, iron deficiency and iron deficiency anaemia. Currently, these alterations constitute an important problem of public health. The genetic variation implicated in iron overload and iron deficiency anaemia, involves mutations in several genes such as HFE, TFR2,HAMP, HJV, Tf and TMPRSS6. Iron has the capacity to accept and donate electrons easily and can catalyze reactions of free radicals production. Therefore, iron overload causes lipid peroxidation and increases cardiovascular risk. Recently, a relationship between iron metabolism and insulin resistance and obesity has been described. In contrast, regarding a possible relationship between iron deficiency anaemia and cardiovascular disease, many aspects remain controversial. This review presents an overview of the most recent information concerning iron metabolism, iron bioavailability and iron overload/deficiency related diseases. The relation between iron and cardiovascular risk, in iron overload and in iron deficiency situations, is also examined. Finally, strategies to modify dietary iron bioavailability in order to prevent iron deficiency or alleviate iron overload are suggested (AU)


Sujet(s)
Humains , Stress oxydatif , Maladies cardiovasculaires/étiologie , Surcharge en fer/métabolisme , Fer/déficit , Absorption intestinale , Troubles du métabolisme du fer/complications , Fer/administration et posologie , Fer/métabolisme , Fer/pharmacocinétique , Facteurs de risque
3.
Phytopathology ; 98(1): 59-68, 2008 Jan.
Article de Anglais | MEDLINE | ID: mdl-18943239

RÉSUMÉ

Ralstonia solanacearum causes bacterial wilt in numerous plant species worldwide. Although biovar 2 mostly affects solanaceous crops, identification of new hosts remains a matter of concern since there is still no clear-cut distinction between host and nonhost plants. In this work we provide data based on histological studies on the status of 20 plant species, most of them of potential interest in crop rotation. Plants were watered with a beta-glucuronidase-expressing derivative of R. solanacearum biovar 2, and after a month of incubation, sections of roots and stems were analyzed to localize the pathogen on surface, in cortex and/or xylem. Depending on whether the xylem was colonized or not, plants were classified as hosts or nonhosts, respectively. Hosts generally affected in a few xylem vessels or occasionally in all xylem bundles were classified as tolerant. These included some cabbage, kidney bean, and rutabaga cultivars, and the weed bittersweet nightshade (Solanum dulcamara). Nonhosts were the cultivars tested of alfalfa, barley, black radish, carrot, celery, colocynth, fennel, fiber flax, field bean, field pea, horseradish, maize, and zucchini. However, barley and maize, though nonhosts, may act as reservoirs for the pathogen. The present work constitutes a basis for further studies on cropping systems in fields where R. solanacearum has been detected.


Sujet(s)
Plantes/microbiologie , Ralstonia solanacearum/métabolisme , Régulation de l'expression des gènes bactériens/physiologie , Glucuronidase/génétique , Glucuronidase/métabolisme , Interactions hôte-pathogène/physiologie , Maladies des plantes/microbiologie , Ralstonia solanacearum/génétique , Spécificité d'espèce
4.
Eur J Hum Genet ; 8(11): 837-45, 2000 Nov.
Article de Anglais | MEDLINE | ID: mdl-11093273

RÉSUMÉ

Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia type 2 (SPG2) are X-linked developmental defects of myelin formation affecting the central nervous system (CNS). They differ clinically in the onset and severity of the motor disability but both are allelic to the proteolipid protein gene (PLP), which encodes the principal protein components of CNS myelin, PLP and its spliced isoform, DM20. We investigated 52 PMD and 28 SPG families without large PLP duplications or deletions by genomic PCR amplification and sequencing of the PLP gene. We identified 29 and 4 abnormalities respectively. Patients with PLP mutations presented a large range of disease severity, with a continuum between severe forms of PMD, without motor development, to pure forms of SPG. Clinical severity was found to be correlated with the nature of the mutation, suggesting a distinct strategy for detection of PLP point mutations between severe PMD, mild PMD and SPG. Single amino-acid changes in highly conserved regions of the DM20 protein caused the most severe forms of PMD. Substitutions of less conserved amino acids, truncations, absence of the protein and PLP-specific mutations caused the milder forms of PMD and SPG. Therefore, the interactions and stability of the mutated proteins has a major effect on the severity of PLP-related diseases.


Sujet(s)
Encéphalopathies/génétique , Maladies démyélinisantes/génétique , Protéine protéolipidique myéline/génétique , Adolescent , Adulte , Séquence d'acides aminés , Substitution d'acide aminé , Encéphalopathies/anatomopathologie , Enfant , Enfant d'âge préscolaire , ADN/composition chimique , ADN/génétique , Analyse de mutations d'ADN , Maladies démyélinisantes/anatomopathologie , Santé de la famille , Génotype , Humains , Mâle , Adulte d'âge moyen , Données de séquences moléculaires , Mutation , Mutation faux-sens , Maladie de Pelizaeus-Merzbacher/génétique , Phénotype , Indice de gravité de la maladie , Paraplégie spasmodique héréditaire/génétique
5.
Am J Hum Genet ; 65(2): 360-9, 1999 Aug.
Article de Anglais | MEDLINE | ID: mdl-10417279

RÉSUMÉ

Pelizaeus-Merzbacher Disease (PMD) is an X-linked developmental defect of myelination affecting the central nervous system and segregating with the proteolipoprotein (PLP) locus. Investigating 82 strictly selected sporadic cases of PMD, we found PLP mutations in 77%; complete PLP-gene duplications were the most frequent abnormality (62%), whereas point mutations in coding or splice-site regions of the gene were involved less frequently (38%). We analyzed the maternal status of 56 cases to determine the origin of both types of PLP mutation, since this is relevant to genetic counseling. In the 22 point mutations, 68% of mothers were heterozygous for the mutation, a value identical to the two-thirds of carrier mothers that would be expected if there were an equal mutation rate in male and female germ cells. In sharp contrast, among the 34 duplicated cases, 91% of mothers were carriers, a value significantly (chi2=9. 20, P<.01) in favor of a male bias, with an estimation of the male/female mutation frequency (k) of 9.3. Moreover, we observed the occurrence of de novo mutations between parental and grandparental generations in 17 three-generation families, which allowed a direct estimation of the k value (k=11). Again, a significant male mutation imbalance was observed only for the duplications. The mechanism responsible for this strong male bias in the duplications may involve an unequal sister chromatid exchange, since two deletion events, responsible for mild clinical manifestations, have been reported in PLP-related diseases.


Sujet(s)
Protéines de liaison à l'ADN/génétique , Sclérose cérébrale diffuse de Schilder/génétique , Duplication de gène , Cellules germinales/métabolisme , Mutation ponctuelle/génétique , Facteurs de transcription/génétique , Protéine CFTR/génétique , Analyse de mutations d'ADN , Santé de la famille , Femelle , Dosage génique , Fréquence d'allèle , Haplotypes , Hétérozygote , Humains , Mâle , Données de séquences moléculaires , Mères , Réaction de polymérisation en chaîne/méthodes , Polymorphisme génétique/génétique , Reproductibilité des résultats , Caractères sexuels
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE