Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 31
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Proc Biol Sci ; 291(2031): 20240934, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39317318

RÉSUMÉ

Infection duration affects individual host fitness and between-host transmission. Whether an infection is cleared or becomes chronic depends on the complex interaction between host immune responses and parasite growth. Empirical and theoretical studies have suggested that there are critical thresholds of parasite dose that can determine clearance versus chronicity, driven by the ability of the parasite to manipulate host immunity. However, the mammalian immune response is characterized by strong positive and negative feedback loops that could generate duration thresholds even in the absence of direct immunomodulation. Here, we derive and analyse a simple model for the interaction between T-cell subpopulations and parasite growth. We show that whether an infection is cleared or not is very sensitive to the initial immune state, parasite dose and strength of immunological feedbacks. In particular, chronic infections are possible even when parasites provoke a strong and effective immune response and lack any ability to immunomodulate. Our findings indicate that the initial immune state, which often goes unmeasured in empirical studies, is a critical determinant of infection duration. This work also has implications for epidemiological models, as it implies that infection duration will be highly variable among individuals, and dependent on each individual's infection history.


Sujet(s)
Interactions hôte-parasite , Animaux , Modèles immunologiques , Rétrocontrôle physiologique , Lymphocytes T/immunologie
2.
Integr Comp Biol ; 64(3): 841-852, 2024 Sep 27.
Article de Anglais | MEDLINE | ID: mdl-39030049

RÉSUMÉ

Immunopathology, or the harm caused to an organism's own tissues during the activation of its immune system, carries substantial costs. Moreover, avoiding this self-harm may be an important mechanism underlying tolerance of infection, helping to reducing fitness costs without necessarily clearing parasites. Despite the apparent benefits of minimizing immunopathology, such damage persists across a range of host species. Prior work has explored a trade-off with resistance during a single infection as a potential driver of this persistence, with some collateral damage being unavoidable when killing parasites. Here, we present an additional trade-off that could favor the continued presence of immunopathology: robust immune responses during initial infection (e.g., innate immunity in vertebrates) can induce stronger memory (adaptive immunity), offering protection from future infections. We explore this possibility in an adaptive dynamics framework, using theoretical models parameterized from an ecologically relevant host-parasite system, house finches (Haemorhous mexicanus) infected with the bacterial pathogen, Mycoplasma gallisepticum. We find that some degree of immunopathology is often favored when immunopathology during first infection either reduces susceptibility to or enhances recovery from second infection. Further, interactions among factors like transmission rate, recovery rate, background mortality, and pathogen virulence also shape these evolutionary dynamics. Most notably, the evolutionary stability of investment in immunopathology is highly dependent upon the mechanism by which hosts achieve secondary protection (susceptibility vs. recovery), with the potential for abrupt evolutionary shifts between high and low investment under certain conditions. These results highlight the potential for immune memory to play an important role in the evolutionary persistence of immunopathology and the need for future empirical research to reveal the links between immunopathology during initial infections and longer-term immune protection.


Sujet(s)
Immunité acquise , Évolution biologique , Fringillidae , Immunité innée , Animaux , Fringillidae/immunologie , Fringillidae/physiologie , Fringillidae/microbiologie , Infections à Mycoplasma/immunologie , Infections à Mycoplasma/médecine vétérinaire , Infections à Mycoplasma/microbiologie , Maladies des oiseaux/immunologie , Maladies des oiseaux/parasitologie , Maladies des oiseaux/microbiologie , Interactions hôte-pathogène/immunologie
3.
mSphere ; 8(2): e0047822, 2023 04 20.
Article de Anglais | MEDLINE | ID: mdl-36883813

RÉSUMÉ

Enrichment of adherent-invasive Escherichia coli (AIEC) has been consistently detected in subsets of inflammatory bowel disease (IBD) patients. Although some AIEC strains cause colitis in animal models, these studies did not systematically compare AIEC with non-AIEC strains, and causal links between AIEC and disease are still disputed. Specifically, it remains unclear whether AIEC shows enhanced pathogenicity compared to that of commensal E. coli found in the same ecological microhabitat and if the in vitro phenotypes used to classify strains as AIEC are pathologically relevant. Here, we utilized in vitro phenotyping and a murine model of intestinal inflammation to systematically compare strains identified as AIEC with those identified as non-AIEC and relate AIEC phenotypes to pathogenicity. Strains identified as AIEC caused, on average, more severe intestinal inflammation. Intracellular survival/replication phenotypes routinely used to classify AIEC positively correlated with disease, while adherence to epithelial cells and tumor necrosis factor alpha production by macrophages did not. This knowledge was then applied to design and test a strategy to prevent inflammation by selecting E. coli strains that adhered to epithelial cells but poorly survived/replicated intracellularly. Two E. coli strains that ameliorated AIEC-mediated disease were subsequently identified. In summary, our results show a relationship between intracellular survival/replication in E. coli and pathology in murine colitis, suggesting that strains possessing these phenotypes might not only become enriched in human IBD but also contribute to disease. We provide new evidence that specific AIEC phenotypes are pathologically relevant and proof of principle that such mechanistic information can be therapeutically exploited to alleviate intestinal inflammation. IMPORTANCE Inflammatory bowel disease (IBD) is associated with an altered gut microbiota composition, including expansion of Proteobacteria. Many species in this phylum are thought to contribute to disease under certain conditions, including adherent-invasive Escherichia coli (AIEC) strains, which are enriched in some patients. However, whether this bloom contributes to disease or is just a response to IBD-associated physiological changes is unknown. Although assigning causality is challenging, appropriate animal models can test the hypothesis that AIEC strains have an enhanced ability to cause colitis in comparison to other gut commensal E. coli strains and to identify bacterial traits contributing to virulence. We observed that AIEC strains are generally more pathogenic than commensal E. coli and that bacterial intracellular survival/replication phenotypes contributed to disease. We also found that E. coli strains lacking primary virulence traits can prevent inflammation. Our findings provide critical information on E. coli pathogenicity that may inform development of IBD diagnostic tools and therapies.


Sujet(s)
Colite , Infections à Escherichia coli , Maladies inflammatoires intestinales , Humains , Souris , Animaux , Escherichia coli/génétique , Infections à Escherichia coli/microbiologie , Maladies inflammatoires intestinales/microbiologie , Inflammation/anatomopathologie
4.
Ecology ; 104(1): e3873, 2023 01.
Article de Anglais | MEDLINE | ID: mdl-36116067

RÉSUMÉ

Stochastic processes such as genetic drift may hinder adaptation, but the effect of such stochasticity on evolution via its effect on ecological dynamics is poorly understood. Here we evaluate patterns of adaptation in a population subject to variation in demographic stochasticity. We show that stochasticity can alter population dynamics and lead to evolutionary outcomes that are not predicted by classic eco-evolutionary modeling approaches. We also show, however, that these outcomes are governed by nonequilibrium evolutionary attractors-these are maxima in lifetime reproductive success when stochasticity keeps the ecological system away from the deterministic equilibrium. These NEEAs alter the path of evolution but are not visible through the equilibrium lens that underlies much evolutionary theory. Our results reveal that considering population processes during transient periods can greatly improve our understanding of the path and pace of evolution.


Sujet(s)
Évolution biologique , Dérive génétique , Dynamique des populations , Écosystème , Adaptation physiologique/génétique , Processus stochastiques
5.
Ecol Evol ; 12(9): e9264, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-36177139

RÉSUMÉ

Biological rhythms mediate important within-host processes such as metabolism, immunity, and behavior which are often linked to combating disease exposure. For many hosts, exposure to pathogens occurs while feeding. However, the link between feeding rhythms and infection risk is unclear because feeding behavior is tightly coupled with immune and metabolic processes which may decrease susceptibility to infection. Here, we use the Daphnia dentifera-Metschnikowia bicuspidata host-pathogen system to determine how rhythms in feeding rate and immune function mediate infection risk. The host is known to have a nocturnal circadian rhythm in feeding rate, yet we found that they do not exhibit a circadian rhythm in phenoloxidase activity. We found that the time of day when individuals are exposed to pathogens affects the probability of infection with higher infection prevalence at night, indicating that infection risk is driven by a host's circadian rhythm in feeding behavior. These results suggest that the natural circadian rhythm of the host should be considered when addressing epidemiological dynamics.

6.
Proc Biol Sci ; 289(1978): 20212800, 2022 07 13.
Article de Anglais | MEDLINE | ID: mdl-35858064

RÉSUMÉ

Hosts can avoid parasites (and pathogens) by reducing social contact, but such isolation may carry costs, e.g. increased vulnerability to predators. Thus, many predator-host-parasite systems confront hosts with a trade-off between predation and parasitism. Parasites, meanwhile, evolve higher virulence in response to increased host sociality and consequently, increased multiple infections. How does predation shift coevolution of host behaviour and parasite virulence? What if predators are selective, i.e. predators disproportionately capture the sickest hosts? We answer these questions with an eco-coevolutionary model parametrized for a Trinidadian guppy-Gyrodactylus spp. system. Here, increased predation drives host coevolution of higher grouping, which selects for higher virulence. Additionally, higher predator selectivity drives the contact rate higher and virulence lower. Finally, we show how predation and selectivity can have very different impacts on host density and prevalence depending on whether hosts or parasites evolve, or both. For example, higher predator selectivity led to lower prevalence with no evolution or only parasite evolution but higher prevalence with host evolution or coevolution. These findings inform our understanding of diverse systems in which host behavioural responses to predation may lead to increased prevalence and virulence of parasites.


Sujet(s)
Parasites , Poecilia , Animaux , Évolution biologique , Interactions hôte-parasite , Parasites/physiologie , Comportement prédateur , Virulence
7.
FEMS Microbiol Ecol ; 98(10)2022 09 19.
Article de Anglais | MEDLINE | ID: mdl-35862853

RÉSUMÉ

Chronic antibiotic exposure impacts host health through changes to the microbiome. The detrimental effects of antibiotic perturbation on microbiome structure and function after one host generation of exposure have been well-studied, but less is understood about multigenerational effects of antibiotic exposure and subsequent recovery. In this study, we examined microbiome composition and host fitness across five generations of exposure to antibiotics in the model zooplankton host Daphnia magna. By utilizing a split-brood design where half of the offspring from antibiotic-exposed parents were allowed to recover and half were maintained in antibiotics, we examined recovery and resilience of the microbiome. Unexpectedly, we discovered that isolation of single host individuals across generations exerted a strong effect on microbiome composition, with microbiome diversity decreasing over generations regardless of treatment, while host body size and cumulative reproduction increased across generations. Though antibiotics did cause substantial changes to microbiome composition within a generation, recovery generally occurred in one generation regardless of the number of prior generations spent in antibiotics. Our results demonstrate that isolation of individual hosts leads to stochastic extinction of less abundant taxa in the microbiome, suggesting that these taxa are likely maintained via transmission in host populations.


Sujet(s)
Microbiote , Zooplancton , Animaux , Antibactériens/pharmacologie , Daphnia
8.
Nat Ecol Evol ; 6(7): 945-954, 2022 07.
Article de Anglais | MEDLINE | ID: mdl-35618818

RÉSUMÉ

Parasites exploit hosts to replicate and transmit, but overexploitation kills both host and parasite. Predators may shift this cost-benefit balance by consuming infected hosts or changing host behaviour, but the strength of these effects remains unclear. Here we use field and lab data on Trinidadian guppies and their Gyrodactylus spp. parasites to show how differential predation pressure influences parasite virulence and transmission. We use an experimentally demonstrated virulence-transmission trade-off to parametrize a mathematical model in which host shoaling (as a means of anti-predator defence), increases contact rates and selects for higher virulence. Then we validate model predictions by collecting parasites from wild, Trinidadian populations; parasites from high-predation populations were more virulent in common gardens than those from low-predation populations. Broadly, our results indicate that reduced social contact selects against parasite virulence.


Sujet(s)
Parasites , Poecilia , Animaux , Comportement prédateur
9.
PLoS One ; 17(2): e0263538, 2022.
Article de Anglais | MEDLINE | ID: mdl-35113950

RÉSUMÉ

Host-associated microbial communities are impacted by external and within-host factors, i.e., diet and feeding behavior. For organisms known to have a circadian rhythm in feeding behavior, microbiome composition is likely impacted by the different rates of microbe introduction and removal across a daily cycle, in addition to any diet-induced changes in microbial interactions. Here, we measured feeding behavior and used 16S rRNA sequencing to compare the microbial community across a diel cycle in two distantly related species of Daphnia, that differ in their life history traits, to assess how daily feeding patterns impact microbiome composition. We find that Daphnia species reared under similar laboratory conditions have significantly different microbial communities. Additionally, we reveal that Daphnia have daily differences in their microbial composition that correspond with feeding behavior, such that there is greater microbiome diversity at night during the host's active feeding phase. These results highlight that zooplankton microbiomes are relatively distinct and are likely influenced by host phylogeny.


Sujet(s)
Bactéries/génétique , Daphnia/génétique , Daphnia/microbiologie , Daphnia/physiologie , Microbiote , ARN ribosomique 16S/métabolisme , Zooplancton , Animaux , Séquence nucléotidique , Régime alimentaire , Comportement alimentaire , Phylogenèse , Spécificité d'espèce
10.
J Biol Rhythms ; 36(6): 589-594, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34753340

RÉSUMÉ

Circadian rhythms enable organisms to mediate their molecular and physiological processes with changes in their environment. Although feeding behavior directly affects within-organism processes, there are few examples of a circadian rhythm in this key behavior. Here, we show that Daphnia have a nocturnal circadian rhythm in feeding behavior that corresponds with their diel vertical migration (DVM), an important life history strategy for predator and UV avoidance. In addition, this feeding rhythm appears to be temperature compensated, which suggests that feeding behavior is robust to seasonal changes in water temperature. A circadian rhythm in feeding behavior can impact energetically demanding processes like metabolism and immunity, which may have drastic effects on susceptibility to disease, starvation risk, and ultimately, fitness.


Sujet(s)
Rythme circadien , Daphnia , Animaux , Comportement alimentaire , Température
11.
Philos Trans R Soc Lond B Biol Sci ; 376(1837): 20200363, 2021 11 08.
Article de Anglais | MEDLINE | ID: mdl-34538148

RÉSUMÉ

The incidence of zoonotic diseases is increasing worldwide, which makes identifying parasites likely to become zoonotic and hosts likely to harbour zoonotic parasites a critical concern. Prior work indicates that there is a higher risk of zoonotic spillover accruing from closely related hosts and from hosts that are infected with a high phylogenetic diversity of parasites. This suggests that host and parasite evolutionary history may be important drivers of spillover, but identifying whether host-parasite associations are more strongly structured by the host, parasite or both requires co-phylogenetic analyses that combine host-parasite association data with host and parasite phylogenies. Here, we use host-parasite datasets containing associations between helminth taxa and free-range mammals in combination with phylogenetic models to explore whether host, parasite, or both host and parasite evolutionary history influences host-parasite associations. We find that host phylogenetic history is most important for driving patterns of helminth-mammal association, indicating that zoonoses are most likely to come from a host's close relatives. More broadly, our results suggest that co-phylogenetic analyses across broad taxonomic scales can provide a novel perspective for surveying potential emerging infectious diseases. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.


Sujet(s)
Helminthoses animales/épidémiologie , Helminthes/physiologie , Interactions hôte-parasite , Mammifères , Phylogenèse , Zoonoses/épidémiologie , Animaux , Incidence
12.
Philos Trans R Soc Lond B Biol Sci ; 376(1837): 20200351, 2021 11 08.
Article de Anglais | MEDLINE | ID: mdl-34538147

RÉSUMÉ

A growing body of research is focused on the extinction of parasite species in response to host endangerment and declines. Beyond the loss of parasite species richness, host extinction can impact apparent parasite host specificity, as measured by host richness or the phylogenetic distances among hosts. Such impacts on the distribution of parasites across the host phylogeny can have knock-on effects that may reshape the adaptation of both hosts and parasites, ultimately shifting the evolutionary landscape underlying the potential for emergence and the evolution of virulence across hosts. Here, we examine how the reshaping of host phylogenies through extinction may impact the host specificity of parasites, and offer examples from historical extinctions, present-day endangerment, and future projections of biodiversity loss. We suggest that an improved understanding of the impact of host extinction on contemporary host-parasite interactions may shed light on core aspects of disease ecology, including comparative studies of host specificity, virulence evolution in multi-host parasite systems, and future trajectories for host and parasite biodiversity. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.


Sujet(s)
Extinction biologique , Spécificité d'hôte , Interactions hôte-parasite , Parasites/physiologie , Animaux , Spécificité d'espèce
13.
mSystems ; 6(2)2021 Apr 06.
Article de Anglais | MEDLINE | ID: mdl-33824198

RÉSUMÉ

Host-associated microbes contribute to host fitness, but it is unclear whether these contributions are from rare keystone taxa, numerically abundant taxa, or interactions among community members. Experimental perturbation of the microbiota can highlight functionally important taxa; however, this approach is primarily applied in systems with complex communities where the perturbation affects hundreds of taxa, making it difficult to pinpoint contributions of key community members. Here, we use the ecological model organism Daphnia magna to examine the importance of rare and abundant taxa by perturbing its relatively simple microbiota with targeted antibiotics. We used sublethal antibiotic doses to target either rare or abundant members across two temperatures and then measured key host life history metrics and shifts in microbial community composition. We find that removal of abundant taxa had greater impacts on host fitness than did removal of rare taxa and that the abundances of nontarget taxa were impacted by antibiotic treatment, suggesting that no rare keystone taxa exist in the Daphnia magna microbiota but that microbe-microbe interactions may play a role in host fitness. We also find that microbial community composition was impacted by antibiotics differently across temperatures, indicating that ecological context shapes within-host microbial responses and effects on host fitness.IMPORTANCE Understanding the contributions of rare and abundant taxa to host fitness is an outstanding question in host microbial ecology. In this study, we use the model zooplankton Daphnia magna and its relatively simple cohort of bacterial taxa to disentangle the roles of distinct taxa in host life history metrics, using a suite of antibiotics to selectively reduce the abundance of functionally important taxa. We also examine how environmental context shapes the importance of these bacterial taxa in host fitness.

14.
Ecol Evol ; 10(13): 6239-6245, 2020 Jul.
Article de Anglais | MEDLINE | ID: mdl-32724510

RÉSUMÉ

Food ingestion is one of the most basic features of all organisms. However, obtaining precise-and high-throughput-estimates of feeding rates remains challenging, particularly for small, aquatic herbivores such as zooplankton, snails, and tadpoles. These animals typically consume low volumes of food that are time-consuming to accurately measure.We extend a standard high-throughput fluorometry technique, which uses a microplate reader and 96-well plates, as a practical tool for studies in ecology, evolution, and disease biology. We outline technical and methodological details to optimize quantification of individual feeding rates, improve accuracy, and minimize sampling error.This high-throughput assay offers several advantages over previous methods, including i) substantially reduced time allotments per sample to facilitate larger, more efficient experiments; ii) technical replicates; and iii) conversion of in vivo measurements to units (mL-1 hr-1 ind-1) which enables broad-scale comparisons across an array of taxa and studies.To evaluate the accuracy and feasibility of our approach, we use the zooplankton, Daphnia dentifera, as a case study. Our results indicate that this procedure accurately quantifies feeding rates and highlights differences among seven genotypes.The method detailed here has broad applicability to a diverse array of aquatic taxa, their resources, environmental contaminants (e.g., plastics), and infectious agents. We discuss simple extensions to quantify epidemiologically relevant traits, such as pathogen exposure and transmission rates, for infectious agents with oral or trophic transmission.

15.
Sci Rep ; 10(1): 652, 2020 01 20.
Article de Anglais | MEDLINE | ID: mdl-31959775

RÉSUMÉ

The keystone zooplankton Daphnia magna has recently been used as a model system for understanding host-microbiota interactions. However, the bacterial species present and functions associated with their genomes are not well understood. In order to understand potential functions of these species, we combined 16S rRNA sequencing and shotgun metagenomics to characterize the whole-organism microbiota of Daphnia magna. We assembled five potentially novel metagenome-assembled genomes (MAGs) of core bacteria in Daphnia magna. Genes involved in host colonization and immune system evasion were detected across the MAGs. Some metabolic pathways were specific to some MAGs, including sulfur oxidation, nitrate reduction, and flagellar assembly. Amino acid exporters were identified in MAGs identified as important for host fitness, and pathways for key vitamin biosynthesis and export were identified across MAGs. In total, our examination of functions in these MAGs shows a diversity of nutrient acquisition and metabolism pathways present that may benefit the host, as well as genomic signatures of host association and immune system evasion.


Sujet(s)
Daphnia/microbiologie , Interactions hôte-microbes , Métagénomique/méthodes , Microbiote/génétique , Acides aminés , Animaux , Comamonadaceae , Daphnia/métabolisme , Flagelles/physiologie , Séquençage nucléotidique à haut débit , Microbiote/physiologie , Nitrates/métabolisme , Oxydoréduction , ARN ribosomique 16S , Soufre/métabolisme , Vitamines/biosynthèse
16.
Trends Ecol Evol ; 35(1): 68-80, 2020 01.
Article de Anglais | MEDLINE | ID: mdl-31604593

RÉSUMÉ

The loss of appetite that typically accompanies infection or mere exposure to parasites is traditionally considered a negative byproduct of infection, benefitting neither the host nor the parasite. Numerous medical and veterinary practices directly or indirectly subvert this 'illness-mediated anorexia'. However, the ecological factors that influence it, its effects on disease outcomes, and why it evolved remain poorly resolved. We explore how hosts use anorexia to defend against infection and how parasites manipulate anorexia to enhance transmission. Then, we use a coevolutionary model to illustrate how shifts in the magnitude of anorexia (e.g., via drugs) affect disease dynamics and virulence evolution. Anorexia could be exploited to improve disease management; we propose an interdisciplinary approach to minimize unintended consequences.


Sujet(s)
Parasites , Animaux , Évolution biologique , Écologie , Comportement alimentaire , Interactions hôte-parasite , Virulence
17.
Oecologia ; 191(3): 709-719, 2019 Nov.
Article de Anglais | MEDLINE | ID: mdl-31598776

RÉSUMÉ

Predicting how organisms respond to climate change requires that we understand the temperature dependence of fitness in relevant ecological contexts (e.g., with or without predation risk). Predation risk often induces changes to life history traits that are themselves temperature dependent. We explore how perceived predation risk and temperature interact to determine fitness (indicated by the intrinsic rate of increase, r) through changes to its underlying components (net reproductive rate, generation time, and survival) in Daphnia magna. We exposed Daphnia to predation cues from dragonfly naiads early, late, or throughout their ontogeny. Predation risk increased r differentially across temperatures and depending on the timing of exposure to predation cues. The timing of predation risk likewise altered the temperature-dependent response of T and R0. Daphnia at hotter temperatures responded to predation risk by increasing r through a combination of increased R0 and decreased T that together countered an increase in mortality rate. However, only D. magna that experienced predation cues early in ontogeny showed elevated r at colder temperatures. These results highlight the fact that phenotypically plastic responses of life history traits to predation risk can be strongly temperature dependent.


Sujet(s)
Odonata , Animaux , Daphnia , Comportement prédateur , Reproduction , Température
18.
Integr Comp Biol ; 59(5): 1264-1274, 2019 11 01.
Article de Anglais | MEDLINE | ID: mdl-31187120

RÉSUMÉ

Temporary but substantial reductions in voluntary food intake routinely accompany parasite infection in hosts ranging from insects to humans. This "parasite-mediated anorexia" drives dynamic nutrient-dependent feedbacks within and among hosts, which should alter the fitness of both hosts and parasites. Yet, few studies have examined the evolutionary and epidemiological consequences of this ubiquitous but overlooked component of infection. Moreover, numerous biomedical, veterinary, and farming practices (e.g., rapid biomass production via high-calorie or high-fat diets, low-level antibiotics to promote growth, nutritional supplementation, nonsteroidal anti-inflammatory drugs like Ibuprofen) directly or indirectly alter the magnitude of host anorexia-while also controlling host diet and therefore the nutrients available to hosts and parasites. Here, we show that anorexia can enhance or diminish disease severity, depending on whether the current dietary context provides nutrients that bolster or inhibit immune function. Feedbacks driven by nutrition-mediated competition between host immune function and parasite production can create a unimodal relationship between anorexia and parasite fitness. Subsequently, depending on the host's diet, medical or husbandry practices that suppress anorexia could backfire, and inadvertently select for more virulent parasites and larger epidemics. These findings carry implications for the development of integrated treatment programs that consider links between host feeding behavior, nutrition, and disease severity.


Sujet(s)
Anorexie/étiologie , Évolution biologique , Interactions hôte-parasite , État nutritionnel , Virulence , Phénomènes physiologiques nutritionnels chez l'animal , Animaux , Modèles biologiques
19.
Proc Biol Sci ; 286(1902): 20190456, 2019 05 15.
Article de Anglais | MEDLINE | ID: mdl-31064304

RÉSUMÉ

Over a billion people on earth are infected with helminth parasites and show remarkable variation in parasite burden and chronicity. These parasite distributions are captured well by classic statistics, such as the negative binomial distribution. But the within-host processes underlying this variation are not well understood. In this study, we explain variation in macroparasite infection outcomes on the basis of resource flows within hosts. Resource flows realize the interactions between parasites and host immunity and metabolism. When host metabolism is modulated by parasites, we find a positive feedback of parasites on their own resources. While this positive feedback results in parasites improving their resource availability at high burdens, giving rise to chronic infections, it also results in a threshold biomass required for parasites to establish in the host, giving rise to acute infections when biomass fails to clear the threshold. Our finding of chronic and acute outcomes in bistability contrasts with classic theory, yet is congruent with the variation in helminth burdens observed in human and wildlife populations.


Sujet(s)
Helminthiase/immunologie , Helminthiase/métabolisme , Helminthes/physiologie , Interactions hôte-parasite , Animaux , Animaux sauvages , Humains , Modèles biologiques
20.
Front Immunol ; 9: 2453, 2018.
Article de Anglais | MEDLINE | ID: mdl-30429848

RÉSUMÉ

Resource availability is a key environmental constraint affecting the ecology and evolution of species. Resources have strong effects on disease resistance, but they can also affect the other main parasite defense strategy, tolerance. A small but growing number of animal studies are beginning to investigate the effects of resources on tolerance phenotypes. Here, we review how resources affect tolerance strategies across animal taxa ranging from fruit flies to frogs to mice. Surprisingly, resources (quality and quantity) can increase or reduce tolerance, dependent upon the particular host-parasite system. To explore this seeming contradiction, we recast predictions of models of sterility tolerance and mortality tolerance in a resource-dependent context. Doing so reveals that resources can have very different epidemiological and evolutionary effects, depending on what aspects of the tolerance phenotype are affected. Thus, it is critical to consider both sterility and mortality in future empirical studies of how behavioral and environmental resource availability affect tolerance to infection.


Sujet(s)
Anura/parasitologie , Oiseaux/parasitologie , Drosophila melanogaster/parasitologie , Interactions hôte-parasite/immunologie , Tolérance immunitaire/immunologie , Parasitoses animales/immunologie , Animaux , Anura/immunologie , Oiseaux/immunologie , Drosophila melanogaster/immunologie , Souris , Charge parasitaire
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE