Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
bioRxiv ; 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38826346

RÉSUMÉ

The paenilamicins are a group of hybrid non-ribosomal peptide-polyketide compounds produced by the honey bee pathogen Paenibacillus larvae that display activity against Gram-positive pathogens, such as Staphylococcus aureus. While paenilamicins have been shown to inhibit protein synthesis, their mechanism of action has remained unclear. Here, we have determined structures of the paenilamicin PamB2 stalled ribosomes, revealing a unique binding site on the small 30S subunit located between the A- and P-site tRNAs. In addition to providing a precise description of interactions of PamB2 with the ribosome, the structures also rationalize the resistance mechanisms utilized by P. larvae. We could further demonstrate that PamB2 interferes with the translocation of mRNA and tRNAs through the ribosome during translation elongation, and that this inhibitory activity is influenced by the presence of modifications at position 37 of the A-site tRNA. Collectively, our study defines the paenilamicins as a new class of context-specific translocation inhibitors.

2.
Nat Struct Mol Biol ; 30(9): 1380-1392, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37550453

RÉSUMÉ

The ribosome is a major target for clinically used antibiotics, but multidrug resistant pathogenic bacteria are making our current arsenal of antimicrobials obsolete. Here we present cryo-electron-microscopy structures of 17 distinct compounds from six different antibiotic classes bound to the bacterial ribosome at resolutions ranging from 1.6 to 2.2 Å. The improved resolution enables a precise description of antibiotic-ribosome interactions, encompassing solvent networks that mediate multiple additional interactions between the drugs and their target. Our results reveal a high structural conservation in the binding mode between antibiotics with the same scaffold, including ordered water molecules. Water molecules are visualized within the antibiotic binding sites that are preordered, become ordered in the presence of the drug and that are physically displaced on drug binding. Insight into RNA-ligand interactions will facilitate development of new antimicrobial agents, as well as other RNA-targeting therapies.


Sujet(s)
Antibactériens , Ribosomes , Antibactériens/pharmacologie , Antibactériens/composition chimique , Ribosomes/métabolisme , Bactéries/métabolisme , Sites de fixation , ARN/métabolisme
3.
Nucleic Acids Res ; 51(9): 4536-4554, 2023 05 22.
Article de Anglais | MEDLINE | ID: mdl-36951104

RÉSUMÉ

Genome-encoded antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F subfamily (ARE-ABCFs) mediate intrinsic resistance in diverse Gram-positive bacteria. The diversity of chromosomally-encoded ARE-ABCFs is far from being fully experimentally explored. Here we characterise phylogenetically diverse genome-encoded ABCFs from Actinomycetia (Ard1 from Streptomyces capreolus, producer of the nucleoside antibiotic A201A), Bacilli (VmlR2 from soil bacterium Neobacillus vireti) and Clostridia (CplR from Clostridium perfringens, Clostridium sporogenes and Clostridioides difficile). We demonstrate that Ard1 is a narrow spectrum ARE-ABCF that specifically mediates self-resistance against nucleoside antibiotics. The single-particle cryo-EM structure of a VmlR2-ribosome complex allows us to rationalise the resistance spectrum of this ARE-ABCF that is equipped with an unusually long antibiotic resistance determinant (ARD) subdomain. We show that CplR contributes to intrinsic pleuromutilin, lincosamide and streptogramin A resistance in Clostridioides, and demonstrate that C. difficile CplR (CDIF630_02847) synergises with the transposon-encoded 23S ribosomal RNA methyltransferase Erm to grant high levels of antibiotic resistance to the C. difficile 630 clinical isolate. Finally, assisted by uORF4u, our novel tool for detection of upstream open reading frames, we dissect the translational attenuation mechanism that controls the induction of cplR expression upon an antibiotic challenge.


Sujet(s)
Antibactériens , Résistance bactérienne aux médicaments , Gènes bactériens , Bactéries à Gram positif , Antibactériens/pharmacologie , Antibactériens/composition chimique , Clostridioides difficile/effets des médicaments et des substances chimiques , Clostridioides difficile/génétique , Bactéries à Gram positif/effets des médicaments et des substances chimiques , Bactéries à Gram positif/génétique , Nucléosides/composition chimique , Nucléosides/pharmacologie , Résistance bactérienne aux médicaments/effets des médicaments et des substances chimiques , Résistance bactérienne aux médicaments/génétique , Gènes bactériens/génétique , Clostridium/effets des médicaments et des substances chimiques , Clostridium/génétique , Cryomicroscopie électronique
4.
Nucleic Acids Res ; 50(19): 11285-11300, 2022 10 28.
Article de Anglais | MEDLINE | ID: mdl-36300626

RÉSUMÉ

HflX is a ubiquitous bacterial GTPase that splits and recycles stressed ribosomes. In addition to HflX, Listeria monocytogenes contains a second HflX homolog, HflXr. Unlike HflX, HflXr confers resistance to macrolide and lincosamide antibiotics by an experimentally unexplored mechanism. Here, we have determined cryo-EM structures of L. monocytogenes HflXr-50S and HflX-50S complexes as well as L. monocytogenes 70S ribosomes in the presence and absence of the lincosamide lincomycin. While the overall geometry of HflXr on the 50S subunit is similar to that of HflX, a loop within the N-terminal domain of HflXr, which is two amino acids longer than in HflX, reaches deeper into the peptidyltransferase center. Moreover, unlike HflX, the binding of HflXr induces conformational changes within adjacent rRNA nucleotides that would be incompatible with drug binding. These findings suggest that HflXr confers resistance using an allosteric ribosome protection mechanism, rather than by simply splitting and recycling antibiotic-stalled ribosomes.


Sujet(s)
Listeria monocytogenes , Listeria monocytogenes/génétique , Protéines G/génétique , Résistance microbienne aux médicaments , Ribosomes/génétique , Ribosomes/métabolisme , Lincosamides/pharmacologie , Antibactériens/pharmacologie , Antibactériens/métabolisme
5.
Nat Commun ; 13(1): 1860, 2022 04 06.
Article de Anglais | MEDLINE | ID: mdl-35387982

RÉSUMÉ

PoxtA and OptrA are ATP binding cassette (ABC) proteins of the F subtype (ABCF). They confer resistance to oxazolidinone and phenicol antibiotics, such as linezolid and chloramphenicol, which stall translating ribosomes when certain amino acids are present at a defined position in the nascent polypeptide chain. These proteins are often encoded on mobile genetic elements, facilitating their rapid spread amongst Gram-positive bacteria, and are thought to confer resistance by binding to the ribosome and dislodging the bound antibiotic. However, the mechanistic basis of this resistance remains unclear. Here we refine the PoxtA spectrum of action, demonstrate alleviation of linezolid-induced context-dependent translational stalling, and present cryo-electron microscopy structures of PoxtA in complex with the Enterococcus faecalis 70S ribosome. PoxtA perturbs the CCA-end of the P-site tRNA, causing it to shift by ∼4 Šout of the ribosome, corresponding to a register shift of approximately one amino acid for an attached nascent polypeptide chain. We postulate that the perturbation of the P-site tRNA by PoxtA thereby alters the conformation of the attached nascent chain to disrupt the drug binding site.


Sujet(s)
Oxazolidinones , Antibactériens/pharmacologie , Cryomicroscopie électronique , Résistance bactérienne aux médicaments/génétique , Enterococcus faecalis/génétique , Linézolide/pharmacologie , Oxazolidinones/pharmacologie , ARN de transfert/génétique
7.
Nucleic Acids Res ; 49(14): 8355-8369, 2021 08 20.
Article de Anglais | MEDLINE | ID: mdl-34255840

RÉSUMÉ

In the cell, stalled ribosomes are rescued through ribosome-associated protein quality-control (RQC) pathways. After splitting of the stalled ribosome, a C-terminal polyalanine 'tail' is added to the unfinished polypeptide attached to the tRNA on the 50S ribosomal subunit. In Bacillus subtilis, polyalanine tailing is catalyzed by the NEMF family protein RqcH, in cooperation with RqcP. However, the mechanistic details of this process remain unclear. Here we demonstrate that RqcH is responsible for tRNAAla selection during RQC elongation, whereas RqcP lacks any tRNA specificity. The ribosomal protein uL11 is crucial for RqcH, but not RqcP, recruitment to the 50S subunit, and B. subtilis lacking uL11 are RQC-deficient. Through mutational mapping, we identify critical residues within RqcH and RqcP that are important for interaction with the P-site tRNA and/or the 50S subunit. Additionally, we have reconstituted polyalanine-tailing in vitro and can demonstrate that RqcH and RqcP are necessary and sufficient for processivity in a minimal system. Moreover, the in vitro reconstituted system recapitulates our in vivo findings by reproducing the importance of conserved residues of RqcH and RqcP for functionality. Collectively, our findings provide mechanistic insight into the role of RqcH and RqcP in the bacterial RQC pathway.


Sujet(s)
Bacillus subtilis/génétique , Helicase/génétique , Protéines ribosomiques/génétique , Ribosomes/génétique , Peptides/génétique , Peptides/métabolisme , ARN de transfert , Grande sous-unité du ribosome des bactéries/génétique
8.
Nat Commun ; 12(1): 3577, 2021 06 11.
Article de Anglais | MEDLINE | ID: mdl-34117249

RÉSUMÉ

Target protection proteins confer resistance to the host organism by directly binding to the antibiotic target. One class of such proteins are the antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F-subtype (ARE-ABCFs), which are widely distributed throughout Gram-positive bacteria and bind the ribosome to alleviate translational inhibition from antibiotics that target the large ribosomal subunit. Here, we present single-particle cryo-EM structures of ARE-ABCF-ribosome complexes from three Gram-positive pathogens: Enterococcus faecalis LsaA, Staphylococcus haemolyticus VgaALC and Listeria monocytogenes VgaL. Supported by extensive mutagenesis analysis, these structures enable a general model for antibiotic resistance mediated by these ARE-ABCFs to be proposed. In this model, ABCF binding to the antibiotic-stalled ribosome mediates antibiotic release via mechanistically diverse long-range conformational relays that converge on a few conserved ribosomal RNA nucleotides located at the peptidyltransferase center. These insights are important for the future development of antibiotics that overcome such target protection resistance mechanisms.


Sujet(s)
Antibactériens/pharmacologie , Diterpènes/pharmacologie , Résistance bactérienne aux médicaments/effets des médicaments et des substances chimiques , Bactéries à Gram positif/effets des médicaments et des substances chimiques , Lincosamides/pharmacologie , Composés polycycliques/pharmacologie , Streptogramines/pharmacologie , Transporteurs ABC/composition chimique , Transporteurs ABC/génétique , Transporteurs ABC/métabolisme , Adhésines bactériennes/composition chimique , Adhésines bactériennes/génétique , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Sites de fixation , Cryomicroscopie électronique , Résistance bactérienne aux médicaments/génétique , Bactéries à Gram positif/génétique , Modèles moléculaires , Peptidyl transferases/métabolisme , Conformation des protéines , ARN messager , Ribosomes/métabolisme ,
9.
Front Microbiol ; 12: 652980, 2021.
Article de Anglais | MEDLINE | ID: mdl-33815344

RÉSUMÉ

Ribosomes that become stalled on truncated or damaged mRNAs during protein synthesis must be rescued for the cell to survive. Bacteria have evolved a diverse array of rescue pathways to remove the stalled ribosomes from the aberrant mRNA and return them to the free pool of actively translating ribosomes. In addition, some of these pathways target the damaged mRNA and the incomplete nascent polypeptide chain for degradation. This review highlights the recent developments in our mechanistic understanding of bacterial ribosomal rescue systems, including drop-off, trans-translation mediated by transfer-messenger RNA and small protein B, ribosome rescue by the alternative rescue factors ArfA and ArfB, as well as Bacillus ribosome rescue factor A, an additional rescue system found in some Gram-positive bacteria, such as Bacillus subtilis. Finally, we discuss the recent findings of ribosome-associated quality control in particular bacterial lineages mediated by RqcH and RqcP. The importance of rescue pathways for bacterial survival suggests they may represent novel targets for the development of new antimicrobial agents against multi-drug resistant pathogenic bacteria.

10.
Mol Cell ; 81(1): 115-126.e7, 2021 01 07.
Article de Anglais | MEDLINE | ID: mdl-33259810

RÉSUMÉ

In all branches of life, stalled translation intermediates are recognized and processed by ribosome-associated quality control (RQC) pathways. RQC begins with the splitting of stalled ribosomes, leaving an unfinished polypeptide still attached to the large subunit. Ancient and conserved NEMF family RQC proteins target these incomplete proteins for degradation by the addition of C-terminal "tails." How such tailing can occur without the regular suite of translational components is, however, unclear. Using single-particle cryo-electron microscopy (EM) of native complexes, we show that C-terminal tailing in Bacillus subtilis is mediated by NEMF protein RqcH in concert with RqcP, an Hsp15 family protein. Our structures reveal how these factors mediate tRNA movement across the ribosomal 50S subunit to synthesize polypeptides in the absence of mRNA or the small subunit.


Sujet(s)
Bacillus subtilis/métabolisme , Protéines bactériennes/métabolisme , Grande sous-unité du ribosome des bactéries/métabolisme , Bacillus subtilis/génétique , Bacillus subtilis/ultrastructure , Protéines bactériennes/génétique , Cryomicroscopie électronique , Grande sous-unité du ribosome des bactéries/génétique , Grande sous-unité du ribosome des bactéries/ultrastructure
11.
Angew Chem Int Ed Engl ; 58(25): 8581-8584, 2019 06 17.
Article de Anglais | MEDLINE | ID: mdl-30969469

RÉSUMÉ

Natural products represent a rich source of antibiotics that address versatile cellular targets. The deconvolution of their targets via chemical proteomics is often challenged by the introduction of large photocrosslinkers. Here we applied elegaphenone, a largely uncharacterized natural product antibiotic bearing a native benzophenone core scaffold, for affinity-based protein profiling (AfBPP) in Gram-positive and Gram-negative bacteria. This study utilizes the alkynylated natural product scaffold as a probe to uncover intriguing biological interactions with the transcriptional regulator AlgP. Furthermore, proteome profiling of a Pseudomonas aeruginosa AlgP transposon mutant provided unique insights into the mode of action. Elegaphenone enhanced the elimination of intracellular P. aeruginosa in macrophages exposed to sub-inhibitory concentrations of the fluoroquinolone antibiotic norfloxacin.


Sujet(s)
Antibactériens/pharmacologie , Benzophénones/pharmacologie , Produits biologiques/pharmacologie , Pseudomonas aeruginosa/effets des médicaments et des substances chimiques , Antibactériens/synthèse chimique , Antibactériens/composition chimique , Benzophénones/synthèse chimique , Benzophénones/composition chimique , Produits biologiques/synthèse chimique , Produits biologiques/composition chimique , Cellules cultivées , Relation dose-effet des médicaments , Humains , Macrophages/effets des médicaments et des substances chimiques , Macrophages/microbiologie , Tests de sensibilité microbienne , Structure moléculaire , Norfloxacine/antagonistes et inhibiteurs , Norfloxacine/composition chimique , Norfloxacine/pharmacologie , Pseudomonas aeruginosa/cytologie , Relation structure-activité
12.
Proc Natl Acad Sci U S A ; 115(36): 8978-8983, 2018 09 04.
Article de Anglais | MEDLINE | ID: mdl-30126986

RÉSUMÉ

Many Gram-positive pathogenic bacteria employ ribosomal protection proteins (RPPs) to confer resistance to clinically important antibiotics. In Bacillus subtilis, the RPP VmlR confers resistance to lincomycin (Lnc) and the streptogramin A (SA) antibiotic virginiamycin M (VgM). VmlR is an ATP-binding cassette (ABC) protein of the F type, which, like other antibiotic resistance (ARE) ABCF proteins, is thought to bind to antibiotic-stalled ribosomes and promote dissociation of the drug from its binding site. To investigate the molecular mechanism by which VmlR confers antibiotic resistance, we have determined a cryo-electron microscopy (cryo-EM) structure of an ATPase-deficient B. subtilis VmlR-EQ2 mutant in complex with a B. subtilis ErmDL-stalled ribosomal complex (SRC). The structure reveals that VmlR binds within the E site of the ribosome, with the antibiotic resistance domain (ARD) reaching into the peptidyltransferase center (PTC) of the ribosome and a C-terminal extension (CTE) making contact with the small subunit (SSU). To access the PTC, VmlR induces a conformational change in the P-site tRNA, shifting the acceptor arm out of the PTC and relocating the CCA end of the P-site tRNA toward the A site. Together with microbiological analyses, our study indicates that VmlR allosterically dissociates the drug from its ribosomal binding site and exhibits specificity to dislodge VgM, Lnc, and the pleuromutilin tiamulin (Tia), but not chloramphenicol (Cam), linezolid (Lnz), nor the macrolide erythromycin (Ery).


Sujet(s)
Transporteurs ABC/composition chimique , Antibactériens/composition chimique , Bacillus subtilis/enzymologie , Protéines bactériennes/composition chimique , Résistance bactérienne aux médicaments , Transporteurs ABC/génétique , Transporteurs ABC/métabolisme , Régulation allostérique/effets des médicaments et des substances chimiques , Régulation allostérique/génétique , Antibactériens/pharmacologie , Bacillus subtilis/génétique , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , ARN de transfert/composition chimique , ARN de transfert/génétique , ARN de transfert/métabolisme , Ribosomes/composition chimique , Ribosomes/génétique , Ribosomes/métabolisme
13.
Nucleic Acids Res ; 46(4): 1927-1944, 2018 02 28.
Article de Anglais | MEDLINE | ID: mdl-29325104

RÉSUMÉ

When a stop codon is at the 80S ribosomal A site, there are six nucleotides (+4 to +9) downstream that are inferred to be occupying the mRNA channel. We examined the influence of these downstream nucleotides on translation termination success or failure in mammalian cells at the three stop codons. The expected hierarchy in the intrinsic fidelity of the stop codons (UAA>UAG>>UGA) was observed, with highly influential effects on termination readthrough mediated by nucleotides at position +4 and position +8. A more complex influence was observed from the nucleotides at positions +5 and +6. The weakest termination contexts were most affected by increases or decreases in the concentration of the decoding release factor (eRF1), indicating that eRF1 binding to these signals was rate-limiting. When termination efficiency was significantly reduced by cognate suppressor tRNAs, the observed influence of downstream nucleotides was maintained. There was a positive correlation between experimentally measured signal strength and frequency of the signal in eukaryotic genomes, particularly in Saccharomyces cerevisiae and Drosophila melanogaster. We propose that termination efficiency is not only influenced by interrogation of the stop signal directly by the release factor, but also by downstream ribosomal interactions with the mRNA nucleotides in the entry channel.


Sujet(s)
Codon stop , Terminaison de la traduction , ARN messager/métabolisme , Animaux , Cellules COS , Chlorocebus aethiops , Drosophila melanogaster/génétique , Cellules HEK293 , Humains , Nucléotides/métabolisme , Facteurs terminaison chaîne peptidique/métabolisme , ARN de transfert/métabolisme , Ribosomes/métabolisme , Saccharomyces cerevisiae/génétique
14.
PLoS One ; 10(10): e0139036, 2015.
Article de Anglais | MEDLINE | ID: mdl-26447468

RÉSUMÉ

Frameshifting during translation of viral or in rare cases cellular mRNA results in the synthesis of proteins from two overlapping reading frames within the same mRNA. In HIV-1 the protease, reverse transcriptase, and integrase enzymes are in a second reading frame relative to the structural group-specific antigen (gag), and their synthesis is dependent upon frameshifting. This ensures that a strictly regulated ratio of structural proteins and enzymes, which is critical for HIV-1 replication and viral infectivity, is maintained during protein synthesis. The frameshift element in HIV-1 RNA is an attractive target for the development of a new class of anti HIV-1 drugs. However, a number of examples are now emerging of human genes using -1 frameshifting, such as PEG10 and CCR5. In this study we have compared the HIV-1 and PEG10 frameshift elements and shown they have distinct functional characteristics. Frameshifting occurs at several points within each element. Moreover, frameshift modulators that were isolated by high-throughput screening of a library of 114,000 lead-like compounds behaved differently with the PEG10 frameshift element. The most effective compounds affecting the HIV-1 element enhanced frameshifting by 2.5-fold at 10 µM in two different frameshift reporter assay systems. HIV-1 protease:gag protein ratio was affected by a similar amount in a specific assay of virally-infected cultured cell, but the modulation of frameshifting of the first-iteration compounds was not sufficient to show significant effects on viral infectivity. Importantly, two compounds did not affect frameshifting with the human PEG10 element, while one modestly inhibited rather than enhanced frameshifting at the human element. These studies indicate that frameshift elements have unique characteristics that may allow targeting of HIV-1 and of other viruses specifically for development of antiviral therapeutic molecules without effect on human genes like PEG10 that use the same generic mechanism.


Sujet(s)
VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/génétique , Protéines/métabolisme , ARN viral/métabolisme , Bibliothèques de petites molécules/composition chimique , Protéines régulatrices de l'apoptose , Séquence nucléotidique , Chromatographie en phase liquide à haute performance , Protéines de liaison à l'ADN , Mutation avec décalage du cadre de lecture , Gènes rapporteurs , Cellules HEK293 , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/métabolisme , Humains , Spectrométrie de masse , Conformation d'acide nucléique , Biosynthèse des protéines , Protéines de liaison à l'ARN
15.
PLoS One ; 10(3): e0122176, 2015.
Article de Anglais | MEDLINE | ID: mdl-25807539

RÉSUMÉ

HIV-1 utilises -1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating -1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the 'intercodon') contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site. This GGG codon is highly conserved in natural isolates of HIV. When the natural intercodon was replaced with a stop codon two different decoding molecules-eRF1 protein or a cognate suppressor tRNA-were able to access and decode the intercodon prior to -1 frameshifting. This implies significant slippage occurs when the intercodon is in the (perhaps distorted) ribosomal A site. We accommodate the influence of the intercodon in a model of frame maintenance versus frameshifting in HIV-1.


Sujet(s)
VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/génétique , Animaux , Séquence nucléotidique , Cellules COS , Chlorocebus aethiops , Codon , Décalage ribosomique , Cellules HEK293 , Humains , Conformation d'acide nucléique , Facteurs terminaison chaîne peptidique/antagonistes et inhibiteurs , Facteurs terminaison chaîne peptidique/génétique , Facteurs terminaison chaîne peptidique/métabolisme , Interférence par ARN , Petit ARN interférent/métabolisme , ARN de transfert/composition chimique , ARN de transfert/génétique , ARN de transfert/métabolisme , Réaction de polymérisation en chaine en temps réel
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...