Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Antimicrob Agents Chemother ; : e0046624, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39136468

RÉSUMÉ

Novel antimalarials are urgently needed to combat rising resistance to available drugs. The imidazolopiperazine ganaplacide is a promising drug candidate, but decreased susceptibility of laboratory strains has been linked to polymorphisms in the Plasmodium falciparum cyclic amine resistance locus (PfCARL), acetyl-CoA transporter (PfACT), and UDP-galactose transporter (PfUGT). To characterize parasites causing disease in Africa, we assessed ex vivo drug susceptibilities to ganaplacide in 750 P. falciparum isolates collected in Uganda from 2017 to 2023. Drug susceptibilities were assessed using a 72-hour SYBR Green growth inhibition assay. The median IC50 for ganaplacide was 13.8 nM, but some isolates had up to 31-fold higher IC50s (31/750 with IC50 > 100 nM). To assess genotype-phenotype associations, we sequenced genes potentially mediating altered ganaplacide susceptibility in the isolates using molecular inversion probe and dideoxy sequencing methods. PfCARL was highly polymorphic, with eight mutations present in >5% of isolates. None of these eight mutations had previously been selected in laboratory strains with in vitro drug pressure and none were found to be significantly associated with decreased ganaplacide susceptibility. Mutations in PfACT and PfUGT were found in ≤5% of isolates, except for two frequent (>20%) mutations in PfACT; one mutation in PfACT (I140V) was associated with a modest decrease in susceptibility. Overall, Ugandan P. falciparum isolates were mostly highly susceptible to ganaplacide. Known resistance mediators were polymorphic, but mutations previously selected with in vitro drug pressure were not seen, and mutations identified in the Ugandan isolates were generally not associated with decreased ganaplacide susceptibility.

2.
medRxiv ; 2024 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-39072017

RÉSUMÉ

Background: Given the altered responses to both artemisinins and lumefantrine in Eastern Africa, monitoring antimalarial drug resistance in all African countries is paramount. Methods: We measured the susceptibility to six antimalarials using ex vivo growth inhibition assays (IC50) for a total of 805 Plasmodium falciparum isolates obtained from travelers returning to France (2016-2023), mainly from West and Central Africa. Isolates were sequenced using molecular inversion probes (MIPs) targeting fourteen drug resistance genes across the parasite genome. Findings: Ex vivo susceptibility to several drugs has significantly decreased in 2019-2023 versus 2016-2018 parasite samples: lumefantrine (median IC50: 23·0 nM [IQR: 14·4-35·1] in 2019-2023 versus 13·9 nM [8·42-21·7] in 2016-2018, p<0·0001), monodesethylamodiaquine (35·4 [21·2-51·1] versus 20·3 nM [15·4-33·1], p<0·0001), and marginally piperaquine (20·5 [16·5-26·2] versus 18.0 [14·2-22·4] nM, p<0·0001). Only four isolates carried a validated pfkelch13 mutation. Multiple mutations in pfcrt and one in pfmdr1 (N86Y) were significantly associated with altered susceptibility to multiple drugs. The susceptibility to lumefantrine was altered by pfcrt and pfmdr1 mutations in an additive manner, with the wild-type haplotype (pfcrt K76-pfmdr1 N86) exhibiting the least susceptibility. Interpretation: Our study on P. falciparum isolates from West and Central Africa indicates a low prevalence of molecular markers of artemisinin resistance but a significant decrease in susceptibility to the partner drugs that have been the most widely used since a decade -lumefantrine and amodiaquine. These phenotypic changes likely mark parasite adaptation to sustained drug pressure and call for intensifying the monitoring of antimalarial drug resistance in Africa. Funding: This work was supported by the French Ministry of Health (grant to the French National Malaria Reference Center) and by the Agence Nationale de la Recherche (ANR-17-CE15-0013-03 to JC). JAB was supported by NIH R01AI139520. JR postdoctoral fellowship was funded by Institut de Recherche pour le Développement.

3.
Res Sq ; 2024 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-39070647

RÉSUMÉ

Background: Given the altered responses to both artemisinins and lumefantrine in Eastern Africa, monitoring antimalarial drug resistance in all African countries is paramount. Methods: We measured the susceptibility to six antimalarials using ex vivo growth inhibition assays (IC 50 ) for a total of 805 Plasmodium falciparum isolates obtained from travelers returning to France (2016-2023), mainly from West and Central Africa. Isolates were sequenced using molecular inversion probes (MIPs) targeting fourteen drug resistance genes across the parasite genome. Findings: Ex vivo susceptibility to several drugs has significantly decreased in 2019-2023 versus 2016-2018 parasite samples: lumefantrine (median IC 50 : 23·0 nM [IQR: 14·4-35·1] in 2019-2023 versus 13·9 nM [8·42-21·7] in 2016-2018, p<0·0001), monodesethylamodiaquine (35·4 [21·2-51·1] versus 20·3 nM [15·4-33·1], p<0·0001), and marginally piperaquine (20·5 [16·5-26·2] versus 18.0 [14·2-22·4] nM, p<0·0001). Only four isolates carried a validated pfkelch13 mutation. Multiple mutations in pfcrt and one in pfmdr1 (N86Y) were significantly associated with altered susceptibility to multiple drugs. The susceptibility to lumefantrine was altered by pfcrt and pfmdr1 mutations in an additive manner, with the wild-type haplotype ( pfcrt K76- pfmdr1 N86) exhibiting the least susceptibility. Interpretation: Our study on P. falciparum isolates from West and Central Africa indicates a low prevalence of molecular markers of artemisinin resistance but a significant decrease in susceptibility to the partner drugs that have been the most widely used since a decade -lumefantrine and amodiaquine. These phenotypic changes likely mark parasite adaptation to sustained drug pressure and call for intensifying the monitoring of antimalarial drug resistance in Africa.

4.
medRxiv ; 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38978652

RÉSUMÉ

Plasmodium vivax transmission occurs throughout the tropics and is an emerging threat in areas of Plasmodium falciparum decline, causing relapse infections that complicate treatment and control. Targeted sequencing for P. falciparum has been widely deployed to detect population structure and the geographic spread of antimalarial and diagnostic resistance. However, there are fewer such tools for P. vivax . Leveraging global variation data, we designed four molecular inversion probe (MIP) genotyping panels targeting geographically differentiating SNPs, neutral SNPs, putative antimalarial resistance genes, and vaccine candidate genes. We deployed these MIP panels on 866 infections from the Peruvian Amazon and identified transmission networks with clonality (IBD>0.99), copy number variation in Pvdbp and multiple Pvrbps , fixation of putative antimalarial resistance, and balancing selection in 13 vaccine candidate genes. Our MIP panels are the broadest genotyping panel currently available and are poised for successful deployment in other regions of P. vivax transmission.

5.
J Infect Dis ; 230(2): 497-504, 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-38874098

RÉSUMÉ

Newly arrived refugees offer insights into malaria epidemiology in their countries of origin. We evaluated asymptomatic refugee children within 7 days of arrival in Uganda from South Sudan and the Democratic Republic of Congo (DRC) in 2022 for parasitemia, parasite species, and Plasmodium falciparum drug resistance markers. Asymptomatic P. falciparum infections were common in both populations. Coinfection with P. malariae was more common in DRC refugees. Prevalences of markers of aminoquinoline resistance (PfCRT K76T, PfMDR1 N86Y) were much higher in South Sudan refugees, of antifolate resistance (PfDHFR C59R and I164L, PfDHPS A437G, K540E, and A581G) much higher in DRC refugees, and of artemisinin partial resistance (ART-R; PfK13 C469Y and A675V) moderate in both populations. Prevalences of most mutations differed from those seen in Ugandans attending health centers near the refugee centers. Refugee evaluations yielded insights into varied malaria epidemiology and identified markers of ART-R in 2 previously little-studied countries.


Sujet(s)
Antipaludiques , Résistance aux substances , Paludisme à Plasmodium falciparum , Plasmodium falciparum , Protéines de protozoaire , Réfugiés , Humains , Ouganda/épidémiologie , Antipaludiques/usage thérapeutique , Antipaludiques/pharmacologie , Résistance aux substances/génétique , Prévalence , Enfant d'âge préscolaire , Plasmodium falciparum/effets des médicaments et des substances chimiques , Plasmodium falciparum/génétique , Paludisme à Plasmodium falciparum/épidémiologie , Paludisme à Plasmodium falciparum/parasitologie , Paludisme à Plasmodium falciparum/traitement médicamenteux , Femelle , Mâle , Enfant , Protéines de protozoaire/génétique , Nourrisson , Protéines de transport membranaire/génétique , Protéines associées à la multirésistance aux médicaments/génétique , Soudan/épidémiologie , Marqueurs biologiques/sang , Artémisinines/usage thérapeutique , Artémisinines/pharmacologie , Parasitémie/épidémiologie , Parasitémie/traitement médicamenteux , Plasmodium malariae/génétique , Plasmodium malariae/effets des médicaments et des substances chimiques
6.
medRxiv ; 2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-38746440

RÉSUMÉ

In Africa, the first Plasmodium falciparum Kelch13 (K13) artemisinin partial resistance mutation 561H was first detected and validated in Rwanda. Surveillance to better define the extent of the emergence in Rwanda and neighboring countries as other mutations arise in East Africa is critical. We employ a novel scheme of liquid blood drop preservation combined with pooled sequencing to provide a cost-effective rapid assessment of resistance mutation frequencies at multiple collection sites across Rwanda and neighboring countries. Malaria-positive samples (n=5,465) were collected from 39 health facilities in Rwanda, Uganda, Tanzania, and the Democratic Republic of the Congo (DRC) between May 2022 and March 2023 and sequenced in 199 pools. In Rwanda, K13 561H and 675V were detected in 90% and 65% of sites with an average frequency of 19.0% (0-54.5%) and 5.0% (0-35.5%), respectively. In Tanzania, 561H had high frequency in multiple sites while it was absent from the DRC although 675V was seen at low frequency. Conceringly candidate mutations were observed: 441L, 449A, and 469F co-occurred with validated mutations suggesting they are arising under the same pressures. Other resistance markers associated with artemether-lumefantrine are common: P. falciparum multidrug resistance protein 1 N86 at 98.0% and 184F at 47.0% (0-94.3%) and P. falciparum chloroquine resistance transporter 76T at 14.7% (0-58.6%). Additionally, sulfadoxine-pyrimethamine-associated mutations show high frequencies. Overall, K13 mutations are rapidly expanding in the region further endangering control efforts with the potential of engendering partner drug resistance.

7.
N Engl J Med ; 389(8): 722-732, 2023 Aug 24.
Article de Anglais | MEDLINE | ID: mdl-37611122

RÉSUMÉ

BACKGROUND: Partial resistance of Plasmodium falciparum to the artemisinin component of artemisinin-based combination therapies, the most important malaria drugs, emerged in Southeast Asia and now threatens East Africa. Partial resistance, which manifests as delayed clearance after therapy, is mediated principally by mutations in the kelch protein K13 (PfK13). Limited longitudinal data are available on the emergence and spread of artemisinin resistance in Africa. METHODS: We performed annual surveillance among patients who presented with uncomplicated malaria at 10 to 16 sites across Uganda from 2016 through 2022. We sequenced the gene encoding kelch 13 (pfk13) and analyzed relatedness using molecular methods. We assessed malaria metrics longitudinally in eight Ugandan districts from 2014 through 2021. RESULTS: By 2021-2022, the prevalence of parasites with validated or candidate resistance markers reached more than 20% in 11 of the 16 districts where surveillance was conducted. The PfK13 469Y and 675V mutations were seen in far northern Uganda in 2016-2017 and increased and spread thereafter, reaching a combined prevalence of 10 to 54% across much of northern Uganda, with spread to other regions. The 469F mutation reached a prevalence of 38 to 40% in one district in southwestern Uganda in 2021-2022. The 561H mutation, previously described in Rwanda, was first seen in southwestern Uganda in 2021, reaching a prevalence of 23% by 2022. The 441L mutation reached a prevalence of 12 to 23% in three districts in western Uganda in 2022. Genetic analysis indicated local emergence of mutant parasites independent of those in Southeast Asia. The emergence of resistance was observed predominantly in areas where effective malaria control had been discontinued or transmission was unstable. CONCLUSIONS: Data from Uganda showed the emergence of partial resistance to artemisinins in multiple geographic locations, with increasing prevalence and regional spread over time. (Funded by the National Institutes of Health.).


Sujet(s)
Artémisinines , Résistance aux substances , Paludisme , Parasites , Protéines de protozoaire , Animaux , Humains , Artémisinines/pharmacologie , Artémisinines/usage thérapeutique , Référenciation , Parasites/effets des médicaments et des substances chimiques , Parasites/génétique , Ouganda/épidémiologie , Résistance aux substances/génétique , Paludisme/traitement médicamenteux , Paludisme/génétique , Paludisme/parasitologie , Protéines de protozoaire/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE