Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 26
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
bioRxiv ; 2023 May 26.
Article de Anglais | MEDLINE | ID: mdl-37720016

RÉSUMÉ

Neurodevelopmental disorders are frequently linked to mutations in synaptic organizing molecules. MAM domain containing glycosylphosphatidylinositol anchor 1 and 2 (MDGA1 and MDGA2) are a family of synaptic organizers suggested to play an unusual role as synaptic repressors, but studies offer conflicting evidence for their localization. Using epitope-tagged MDGA1 and MDGA2 knock-in mice, we found that native MDGAs are expressed throughout the brain, peaking early in postnatal development. Surprisingly, endogenous MDGA1 was enriched at excitatory, but not inhibitory, synapses. Both shRNA knockdown and CRISPR/Cas9 knockout of MDGA1 resulted in cell-autonomous, specific impairment of AMPA receptor-mediated synaptic transmission, without affecting GABAergic transmission. Conversely, MDGA2 knockdown/knockout selectively depressed NMDA receptor-mediated transmission but enhanced inhibitory transmission. Our results establish that MDGA2 acts as a synaptic repressor, but only at inhibitory synapses, whereas both MDGAs are required for excitatory transmission. This nonoverlapping division of labor between two highly conserved synaptic proteins is unprecedented.

2.
Cell Rep ; 41(2): 111483, 2022 10 11.
Article de Anglais | MEDLINE | ID: mdl-36223737

RÉSUMÉ

The critical role of AMPA receptor (AMPAR) trafficking in long-term potentiation (LTP) of excitatory synaptic transmission is now well established, but the underlying molecular mechanism is still uncertain. Recent research suggests that PSD-95 captures AMPARs via an interaction with the AMPAR auxiliary subunits-transmembrane AMPAR regulatory proteins (TARPs). To determine if such interaction is a core minimal component of the AMPAR trafficking and LTP mechanism, we engineered artificial binding partners, which individually were biochemically and functionally dead but which, when expressed together, rescue binding and both basal synaptic transmission and LTP. These findings establish the TARP/PSD-95 complex as an essential interaction underlying AMPAR trafficking and LTP.


Sujet(s)
Potentialisation à long terme , Récepteur de l'AMPA , Homologue-4 de la protéine Disks Large/métabolisme , Potentialisation à long terme/physiologie , Protéines nucléaires/métabolisme , Récepteur de l'AMPA/métabolisme , Synapses/métabolisme , Transmission synaptique/physiologie
3.
Elife ; 102021 12 15.
Article de Anglais | MEDLINE | ID: mdl-34908526

RÉSUMÉ

Long-term potentiation (LTP) is arguably the most compelling cellular model for learning and memory. While the mechanisms underlying the induction of LTP ('learning') are well understood, the maintenance of LTP ('memory') has remained contentious over the last 20 years. Here, we find that Ca2+-calmodulin-dependent kinase II (CaMKII) contributes to synaptic transmission and is required LTP maintenance. Acute inhibition of CaMKII erases LTP and transient inhibition of CaMKII enhances subsequent LTP. These findings strongly support the role of CaMKII as a molecular storage device.


How the brain stores information is a question that has fascinated neuroscientists for well over a century. Two general ideas have emerged. The first is that groups of neurons hold information by staying active. The second is that they hold information by strengthening their connections to one another, making it easier for them to work together in the future. Scientists call this second idea 'long-term potentiation'. One of the molecules involved in long-term potentiation is a protein called calcium-calmodulin-dependent kinase II, or CaMKII for short. Blocking CaMKII, or deleting its gene, stops the connections between neurons from becoming stronger. This suggests neurons need CaMKII to learn, but it remains unclear whether neurons also use CaMKII to maintain neuronal memories after they have been created. If CaMKII does play a role in maintaining memories, blocking it after learning should reverse the learning process, but so far, experiments have not been able to show this. Tao et al. revisited these experiments to find out more. They examined slices of brain tissue from mice that had been treated with fast-acting CaMKII inhibitors. It took tens of minutes, but the inhibitors were able to reverse long-term potentiation, both for newly acquired neuronal memories and for older memories that had formed when the mice were alive. The choice of CaMKII inhibitor and the time lag could explain why scientists have not observed the effect before. Understanding long-term potentiation is a fundamental part of understanding learning and memory. It could also reveal more about the opposite phenomenon: long-term depression. This is a type of learning where the connections between neurons become weaker. Long-term depression also takes tens of minutes to occur, suggesting that future research into CaMKII might shed light on how it works.


Sujet(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/génétique , Potentialisation à long terme , Transmission synaptique , Animaux , Calcium-Calmodulin-Dependent Protein Kinase Type 2/métabolisme , Souris
4.
Neuropharmacology ; 197: 108710, 2021 10 01.
Article de Anglais | MEDLINE | ID: mdl-34271016

RÉSUMÉ

AMPA receptors (AMPARs) are fundamental elements in excitatory synaptic transmission and synaptic plasticity in the CNS. Long term potentiation (LTP), a form of synaptic plasticity which contributes to learning and memory formation, relies on the accumulation of AMPARs at the postsynapse. This phenomenon requires the coordinated recruitment of different elements in the AMPAR complex. Based on recent research reviewed herein, we propose an updated AMPAR trafficking and LTP model which incorporates both extracellular as well as intracellular mechanisms. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.


Sujet(s)
Potentialisation à long terme/physiologie , Récepteur de l'AMPA/physiologie , Animaux , Humains , Potentialisation à long terme/génétique , Récepteur de l'AMPA/génétique , Récepteur de l'AMPA/métabolisme
5.
Development ; 147(24)2020 12 23.
Article de Anglais | MEDLINE | ID: mdl-33168583

RÉSUMÉ

The endocannabinoid (eCB) system, via the cannabinoid CB1 receptor, regulates neurodevelopment by controlling neural progenitor proliferation and neurogenesis. CB1 receptor signalling in vivo drives corticofugal deep layer projection neuron development through the regulation of BCL11B and SATB2 transcription factors. Here, we investigated the role of eCB signalling in mouse pluripotent embryonic stem cell-derived neuronal differentiation. Characterization of the eCB system revealed increased expression of eCB-metabolizing enzymes, eCB ligands and CB1 receptors during neuronal differentiation. CB1 receptor knockdown inhibited neuronal differentiation of deep layer neurons and increased upper layer neuron generation, and this phenotype was rescued by CB1 re-expression. Pharmacological regulation with CB1 receptor agonists or elevation of eCB tone with a monoacylglycerol lipase inhibitor promoted neuronal differentiation of deep layer neurons at the expense of upper layer neurons. Patch-clamp analyses revealed that enhancing cannabinoid signalling facilitated neuronal differentiation and functionality. Noteworthy, incubation with CB1 receptor agonists during human iPSC-derived cerebral organoid formation also promoted the expansion of BCL11B+ neurons. These findings unveil a cell-autonomous role of eCB signalling that, via the CB1 receptor, promotes mouse and human deep layer cortical neuron development.


Sujet(s)
Différenciation cellulaire/génétique , Protéines de liaison aux séquences d'ADN MAR/génétique , Neurones/métabolisme , Récepteur cannabinoïde de type CB1/génétique , Protéines de répression/génétique , Facteurs de transcription/génétique , Protéines suppresseurs de tumeurs/génétique , Animaux , Prolifération cellulaire/effets des médicaments et des substances chimiques , Cervelet/croissance et développement , Développement embryonnaire/génétique , Endocannabinoïdes/agonistes , Endocannabinoïdes/génétique , Endocannabinoïdes/métabolisme , Régulation de l'expression des gènes au cours du développement/génétique , Humains , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Souris , Cellules souches neurales/cytologie , Cellules souches neurales/métabolisme , Neurogenèse/effets des médicaments et des substances chimiques , Organoïdes/croissance et développement , Transduction du signal/génétique
6.
Elife ; 92020 08 24.
Article de Anglais | MEDLINE | ID: mdl-32831170

RÉSUMÉ

We tested the proposal that the C-terminal domain (CTD) of the AMPAR subunit GluA1 is required for LTP. We found that a knock-in mouse lacking the CTD of GluA1 expresses normal LTP and spatial memory, assayed by the Morris water maze. Our results support a model in which LTP generates synaptic slots, which capture passively diffusing AMPARs.


Sujet(s)
Potentialisation à long terme , Récepteur de l'AMPA , Animaux , Lignée cellulaire , Femelle , Techniques de knock-in de gènes , Hippocampe/métabolisme , Humains , Potentialisation à long terme/génétique , Potentialisation à long terme/physiologie , Mâle , Apprentissage du labyrinthe/physiologie , Souris , Souris de lignée C57BL , Souris transgéniques , Domaines protéiques/génétique , Récepteur de l'AMPA/composition chimique , Récepteur de l'AMPA/génétique , Récepteur de l'AMPA/métabolisme , Mémoire spatiale/physiologie
7.
Neuron ; 104(3): 529-543.e6, 2019 11 06.
Article de Anglais | MEDLINE | ID: mdl-31492534

RÉSUMÉ

Transmembrane AMPA receptor (AMPAR) regulatory proteins (TARPs) modulate AMPAR synaptic trafficking and transmission via disc-large (DLG) subfamily of membrane-associated guanylate kinases (MAGUKs). Despite extensive studies, the molecular mechanism governing specific TARP/MAGUK interaction remains elusive. Using stargazin and PSD-95 as the representatives, we discover that the entire tail of stargazin (Stg_CT) is required for binding to PSD-95. The PDZ binding motif (PBM) and an Arg-rich motif upstream of PBM conserved in TARPs bind to multiple sites on PSD-95, thus resulting in a highly specific and multivalent stargazin/PSD-95 complex. Stargazin in complex with PSD-95 or PSD-95-assembled postsynaptic complexes form highly concentrated and dynamic condensates via phase separation, reminiscent of stargazin/PSD-95-mediated AMPAR synaptic clustering and trapping. Importantly, charge neutralization mutations in TARP_CT Arg-rich motif weakened TARP's condensation with PSD-95 and impaired TARP-mediated AMPAR synaptic transmission in mice hippocampal neurons. The TARP_CT/PSD-95 interaction mode may have implications for understanding clustering of other synaptic transmembrane proteins.


Sujet(s)
Canaux calciques/métabolisme , Homologue-4 de la protéine Disks Large/métabolisme , Neurones/métabolisme , Récepteur de l'AMPA/métabolisme , Transmission synaptique , Animaux , Guanylate kinase/métabolisme , Hippocampe/cytologie , Hippocampe/métabolisme , Souris , Densité post-synaptique/métabolisme , Transport des protéines
8.
Nat Commun ; 9(1): 5205, 2018 12 03.
Article de Anglais | MEDLINE | ID: mdl-30510185

RÉSUMÉ

The originally published version of this Article contained errors in Figure 5, for which we apologise. In panel c, the scatter graph was inadvertently replaced with a scatter graph comprising a subset of data points from panel d. Furthermore, the legends to Figures 5c and 5d were inverted. These errors have now been corrected in both the PDF and HTML versions of the Article, and the incorrect version of Fig. 5c is presented in the Author Correction associated with this Article.

9.
Proc Natl Acad Sci U S A ; 115(23): E5373-E5381, 2018 06 05.
Article de Anglais | MEDLINE | ID: mdl-29784783

RÉSUMÉ

The δ1 glutamate receptor (GluD1) was cloned decades ago and is widely expressed in many regions of the brain. However, its functional roles in these brain circuits remain unclear. Here, we find that GluD1 is required for both excitatory synapse formation and maintenance in the hippocampus. The action of GluD1 is absent in the Cbln2 knockout mouse. Furthermore, the GluD1 actions require the presence of presynaptic neurexin 1ß carrying the splice site 4 insert (+S4). Together, our findings demonstrate that hippocampal synapse assembly and maintenance require a tripartite molecular complex in which the ligand Cbln2 binds with presynaptic neurexin 1ß (+S4) and postsynaptic GluD1. We provide evidence that this mechanism may apply to other forebrain synapses, where GluD1 is widely expressed.


Sujet(s)
Hippocampe/métabolisme , Protéines de tissu nerveux/métabolisme , Molécules d'adhérence cellulaire neurales/métabolisme , Précurseurs de protéines/métabolisme , Récepteurs de surface cellulaire/métabolisme , Récepteurs au glutamate/métabolisme , Synapses/métabolisme , Animaux , Encéphale/cytologie , Encéphale/métabolisme , Protéines de liaison au calcium , Différenciation cellulaire/physiologie , Cellules cultivées , Glutamate dehydrogenase , Hippocampe/cytologie , Souris , Souris knockout , Protéines de tissu nerveux/génétique , Molécules d'adhérence cellulaire neurales/génétique , Neurones/cytologie , Neurones/métabolisme , Précurseurs de protéines/génétique , Rats , Récepteurs de surface cellulaire/génétique , Récepteurs au glutamate/génétique , Synapses/génétique , Transmission synaptique
10.
Nat Commun ; 9(1): 2069, 2018 05 25.
Article de Anglais | MEDLINE | ID: mdl-29802289

RÉSUMÉ

CaMKII is one of the most studied synaptic proteins, but many critical issues regarding its role in synaptic function remain unresolved. Using a CRISPR-based system to delete CaMKII and replace it with mutated forms in single neurons, we have rigorously addressed its various synaptic roles. In brief, basal AMPAR and NMDAR synaptic transmission both require CaMKIIα, but not CaMKIIß, indicating that, even in the adult, synaptic transmission is determined by the ongoing action of CaMKIIα. While AMPAR transmission requires kinase activity, NMDAR transmission does not, implying a scaffolding role for the CaMKII protein instead. LTP is abolished in the absence of CaMKIIα and/or CaMKIIß and with an autophosphorylation impaired CaMKIIα (T286A). With the exception of NMDAR synaptic currents, all aspects of CaMKIIα signaling examined require binding to the NMDAR, emphasizing the essential role of this receptor as a master synaptic signaling hub.


Sujet(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/métabolisme , Hippocampe/physiologie , Récepteurs du N-méthyl-D-aspartate/métabolisme , Transmission synaptique/physiologie , Animaux , Systèmes CRISPR-Cas , Calcium-Calmodulin-Dependent Protein Kinase Type 2/génétique , Membrane cellulaire/métabolisme , Femelle , Cellules HEK293 , Hippocampe/cytologie , Humains , Potentialisation à long terme/physiologie , Souris , Souris knockout , Neurones/cytologie , Neurones/physiologie , Phosphorylation , Rats , Récepteurs au glutamate/métabolisme , Transduction du signal/physiologie , Synapses/physiologie
11.
Proc Natl Acad Sci U S A ; 115(15): 3948-3953, 2018 04 10.
Article de Anglais | MEDLINE | ID: mdl-29581259

RÉSUMÉ

Long-term potentiation (LTP) is a persistent strengthening of synaptic transmission in the brain and is arguably the most compelling cellular and molecular model for learning and memory. Previous work found that both AMPA receptors and exogenously expressed kainate receptors are equally capable of expressing LTP, despite their limited homology and their association with distinct auxiliary subunits, indicating that LTP is far more promiscuous than previously thought. What might these two subtypes of glutamate receptor have in common? Using a single-cell molecular replacement strategy, we demonstrate that the AMPA receptor auxiliary subunit TARP γ-8, via its PDZ-binding motif, is indispensable for both basal synaptic transmission and LTP. Remarkably, kainate receptors and their auxiliary subunits Neto proteins share the same requirement of PDZ-binding domains for synaptic trafficking and LTP. Together, these results suggest that a minimal postsynaptic requirement for LTP is the PDZ binding of glutamate receptors/auxiliary subunits to PSD scaffolding proteins.


Sujet(s)
Canaux calciques/métabolisme , Potentialisation à long terme , Récepteur de l'AMPA/métabolisme , Synapses/métabolisme , Animaux , Canaux calciques/composition chimique , Canaux calciques/génétique , Humains , Domaines PDZ , Liaison aux protéines , Récepteur de l'AMPA/composition chimique , Récepteur de l'AMPA/génétique , Récepteurs kaïnate/génétique , Récepteurs kaïnate/métabolisme , Synapses/composition chimique , Synapses/génétique
12.
Front Pharmacol ; 9: 1508, 2018.
Article de Anglais | MEDLINE | ID: mdl-30687088

RÉSUMÉ

Alterations of the PI3K/Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway are causally involved in a subset of malformations of cortical development (MCDs) ranging from focal cortical dysplasia (FCD) to hemimegalencephaly and megalencephaly. These MCDs represent a frequent cause of refractory pediatric epilepsy. The endocannabinoid system -especially cannabinoid CB1 receptor- exerts a neurodevelopmental regulatory role at least in part via activation of mTORC1 signaling. Therefore, we sought to characterize the possible contribution of endocannabinoid system signaling to FCD. Confocal microscopy characterization of the CB1 receptor expression and mTORC1 activation was conducted in FCD Type II resection samples. FCD samples were subjected to single nucleotide polymorphism screening for endocannabinoid system elements, as well as CB1 receptor gene sequencing. Cannabinoid CB1 receptor levels were increased in FCD with overactive mTORC1 signaling. CB1 receptors were enriched in phospho-S6-positive cells including balloon cells (BCs) that co-express aberrant markers of undifferentiated cells and dysplastic neurons. Pharmacological regulation of CB1 receptors and the mTORC1 pathway was performed in fresh FCD-derived organotypic cultures. HU-210-evoked activation of CB1 receptors was unable to further activate mTORC1 signaling, whereas CB1 receptor blockade with rimonabant attenuated mTORC1 overactivation. Alterations of the endocannabinoid system may thus contribute to FCD pathological features, and blockade of cannabinoid signaling might be a new therapeutic intervention in FCD.

13.
Proc Natl Acad Sci U S A ; 114(50): 13266-13271, 2017 12 12.
Article de Anglais | MEDLINE | ID: mdl-29180434

RÉSUMÉ

Bidirectional scaling of synaptic transmission, expressed as a compensatory change in quantal size following chronic activity perturbation, is a critical effector mechanism underlying homeostatic plasticity in the brain. An emerging model posits that the GluA2 AMPA receptor (AMPAR) subunit may be important for the bidirectional scaling of excitatory transmission; however, whether this subunit plays an obligatory role in synaptic scaling, and the identity of the precise domain(s) involved, remain controversial. We set out to determine the specific AMPAR subunit required for scaling up in CA1 hippocampal pyramidal neurons, and found that the GluA2 subunit is both necessary and sufficient. In addition, our results point to a critical role for a single amino acid within the membrane-proximal region of the GluA2 cytoplasmic tail, and suggest a distinct model for the regulation of AMPAR trafficking in synaptic homeostasis.


Sujet(s)
Région CA1 de l'hippocampe/métabolisme , Récepteur de l'AMPA/métabolisme , Potentiels synaptiques , Animaux , Région CA1 de l'hippocampe/cytologie , Région CA1 de l'hippocampe/physiologie , Homéostasie , Souris , Domaines protéiques , Transport des protéines , Cellules pyramidales/métabolisme , Cellules pyramidales/physiologie , Récepteur de l'AMPA/composition chimique , Synapses/métabolisme , Synapses/physiologie
14.
Proc Natl Acad Sci U S A ; 114(27): 7136-7141, 2017 07 03.
Article de Anglais | MEDLINE | ID: mdl-28630296

RÉSUMÉ

The amino-terminal domain (ATD) of AMPA receptors (AMPARs) accounts for approximately 50% of the protein, yet its functional role, if any, remains a mystery. We have discovered that the translocation of surface GluA1, but not GluA2, AMPAR subunits to the synapse requires the ATD. GluA1A2 heteromers in which the ATD of GluA1 is absent fail to translocate, establishing a critical role of the ATD of GluA1. Inserting GFP into the ATD interferes with the constitutive synaptic trafficking of GluA1, but not GluA2, mimicking the deletion of the ATD. Remarkably, long-term potentiation (LTP) can override the masking effect of the GFP tag. GluA1, but not GluA2, lacking the ATD fails to show LTP. These findings uncover a role for the ATD in subunit-specific synaptic trafficking of AMPARs, both constitutively and during plasticity. How LTP, induced postsynaptically, engages these extracellular trafficking motifs and what specific cleft proteins participate in the process remain to be elucidated.


Sujet(s)
Récepteur de l'AMPA/métabolisme , Synapses/métabolisme , Motifs d'acides aminés , Animaux , Encéphale/métabolisme , Cytoplasme/métabolisme , Électroporation , Potentiels post-synaptiques excitateurs , Femelle , Protéines à fluorescence verte/métabolisme , Hippocampe/métabolisme , Potentialisation à long terme , Souris , Neurones/métabolisme , Domaines protéiques , Isoformes de protéines , Multimérisation de protéines , Rats , Transmission synaptique
15.
Cereb Cortex ; 27(11): 5303-5317, 2017 11 01.
Article de Anglais | MEDLINE | ID: mdl-28334226

RÉSUMÉ

Neuronal migration is a fundamental process of brain development, and its disruption underlies devastating neurodevelopmental disorders. The transcriptional programs governing this process are relatively well characterized. However, how environmental cues instruct neuronal migration remains poorly understood. Here, we demonstrate that the cannabinoid CB1 receptor is strictly required for appropriate pyramidal neuron migration in the developing cortex. Acute silencing of the CB1 receptor alters neuronal morphology and impairs radial migration. Consequently, CB1 siRNA-electroporated mice display cortical malformations mimicking subcortical band heterotopias and increased seizure susceptibility in adulthood. Importantly, rescuing the CB1 deficiency-induced radial migration arrest by knockdown of the GTPase protein RhoA restored the hyperexcitable neuronal network and seizure susceptibility. Our findings show that CB1 receptor/RhoA signaling regulates pyramidal neuron migration, and that deficient CB1 receptor signaling may contribute to cortical development malformations leading to refractory epilepsy independently of its canonical neuromodulatory role in the adult brain.


Sujet(s)
Mouvement cellulaire/physiologie , Cortex cérébral/malformations , Cortex cérébral/métabolisme , Cellules pyramidales/métabolisme , Récepteur cannabinoïde de type CB1/déficit , Crises épileptiques/métabolisme , Animaux , Cortex cérébral/croissance et développement , Cortex cérébral/anatomopathologie , Modèles animaux de maladie humaine , Prédisposition aux maladies/métabolisme , Prédisposition aux maladies/anatomopathologie , Électroporation , Technique d'immunofluorescence , Techniques de knock-down de gènes , Hybridation in situ , Souris transgéniques , Microscopie confocale , Pentétrazol , Cellules pyramidales/anatomopathologie , Petit ARN interférent , Récepteur cannabinoïde de type CB1/génétique , Crises épileptiques/anatomopathologie , Techniques de culture de tissus , Protéine G RhoA/antagonistes et inhibiteurs , Protéine G RhoA/génétique , Protéine G RhoA/métabolisme
16.
Hum Reprod ; 32(1): 175-184, 2017 01.
Article de Anglais | MEDLINE | ID: mdl-27821707

RÉSUMÉ

STUDY QUESTION: Does signaling via the cannabinoid (CB1) receptor play a role in the pathogenesis of endometriosis in a mouse model? SUMMARY ANSWER: Mice treated with a CB1 agonist developed larger ectopic lesions, while less severe lesions developed in the absence of functional CB1 expression. WHAT IS KNOWN ALREADY: The expression of components of the endocannabinoid system has been demonstrated in both mouse and human uteri. CB1 receptors are expressed in human epithelial and stromal cell lines derived from eutopic endometrium and deep infiltrating endometriosis nodules. STUDY DESIGN, SIZE, DURATION: This was a randomized study in a mouse model of endometriosis. In a first set of experiments, mice with endometriosis were treated with the CB1 receptor agonist methanandamide (MET) (5 mg/kg, n = 20) on Days 1-5 and 8-12. In a second set of experiments, endometriosis development was evaluated in CB1-/- mice and in their wild-type (WT) littermates. PARTICIPANTS/MATERIALS, SETTING, METHODS: Endometriosis-like lesions were induced in Balb/c and C57/Bl6 mice. Two weeks after disease induction, the lesions were counted, measured and either included for immunohistochemistry analysis or frozen for gene expression profiling by semi-quantitative real-time PCR. To limit the role of chance, the experiments were conducted under standardized laboratory conditions with appropriate controls. MAIN RESULTS AND THE ROLE OF CHANCE: The lesion total volume was significantly higher in MET-treated compared with vehicle-treated mice (P < 0.05). Expression levels of mRNA for survivin, N-cadherin, integrin ß1 and interleukin-6 were increased in the ectopic endometrium of MET-treated versus vehicle-treated mice (P < 0.05). CB1-/- recipients that received endometrial tissue fragments from CB1-/- donors, WT recipients that received endometrial tissue fragments from CB1-/- donors and CB1-/- recipients that received endometrial tissue fragments from WT donors all showed a significant reduction in total lesion volume and lower expression of survivin and N-cadherin compared with WT recipients receiving uterine fragments from WT donors (P < 0.05). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: We provide evidence that endocannabinoid signaling via CB1 receptor plays a role in the development of endometriosis in a mouse model. However, the relative contribution of the CB1-mediated signaling pathways active in inflammatory, uterine and peritoneal cells remains to be ascertained. Since the study was performed in a mouse model, the significance of the findings in the human system warrants further investigation. WIDER IMPLICATIONS OF THE FINDINGS: Clarifying the function and regulation of CB1 and its molecular interactions with endogenous ligands, and how endocannabinoids levels are regulated in women with endometriosis, represent critical areas of research for the potential development of a novel medical treatment of the disease. STUDY FUNDING/COMPETING INTERESTS: A.M.S. was supported by a fellowship from Fondazione Giorgio Pardi. The authors have no conflicts of interest to declare.


Sujet(s)
Acides arachidoniques/pharmacologie , Agonistes des récepteurs de cannabinoïdes/pharmacologie , Endométriose/anatomopathologie , Maladies du péritoine/anatomopathologie , Récepteur cannabinoïde de type CB1/métabolisme , Animaux , Cadhérines/métabolisme , Prolifération cellulaire/effets des médicaments et des substances chimiques , Modèles animaux de maladie humaine , Endométriose/métabolisme , Endomètre/effets des médicaments et des substances chimiques , Endomètre/métabolisme , Endomètre/anatomopathologie , Femelle , Protéines IAP/métabolisme , Antigènes CD29/métabolisme , Interleukine-6/métabolisme , Souris , Maladies du péritoine/métabolisme , Péritoine/effets des médicaments et des substances chimiques , Péritoine/métabolisme , Péritoine/anatomopathologie , Protéines de répression/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Transduction du signal/physiologie , Survivine
17.
Stroke ; 48(1): 204-212, 2017 01.
Article de Anglais | MEDLINE | ID: mdl-27899748

RÉSUMÉ

BACKGROUND AND PURPOSE: Stroke is a leading cause of adult disability characterized by physical, cognitive, and emotional disturbances. Unfortunately, pharmacological options are scarce. The cannabinoid type-2 receptor (CB2R) is neuroprotective in acute experimental stroke by anti-inflammatory mechanisms. However, its role in chronic stroke is still unknown. METHODS: Stroke was induced by permanent middle cerebral artery occlusion in mice; CB2R modulation was assessed by administering the CB2R agonist JWH133 ((6aR,10aR)-3-(1,1-dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran) or the CB2R antagonist SR144528 (N-[(1S)-endo-1,3,3-trimethylbicyclo-[2.2.1]-heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide) once daily from day 3 to the end of the experiment or by CB2R genetic deletion. Analysis of immunofluorescence-labeled brain sections, 5-bromo-2´-deoxyuridine (BrdU) staining, fluorescence-activated cell sorter analysis of brain cell suspensions, and behavioral tests were performed. RESULTS: SR144528 decreased neuroblast migration toward the boundary of the infarct area when compared with vehicle-treated mice 14 days after middle cerebral artery occlusion. Consistently, mice on this pharmacological treatment, like mice with CB2R genetic deletion, displayed a lower number of new neurons (NeuN+/BrdU+ cells) in peri-infarct cortex 28 days after stroke when compared with vehicle-treated group, an effect accompanied by a worse sensorimotor performance in behavioral tests. The CB2R agonist did not affect neurogenesis or outcome in vivo, but increased the migration of neural progenitor cells in vitro; the CB2R antagonist alone did not affect in vitro migration. CONCLUSIONS: Our data support that CB2R is fundamental for driving neuroblast migration and suggest that an endocannabinoid tone is required for poststroke neurogenesis by promoting neuroblast migration toward the injured brain tissue, increasing the number of new cortical neurons and, conceivably, enhancing motor functional recovery after stroke.


Sujet(s)
Neurogenèse/physiologie , Récepteur cannabinoïde de type CB2/physiologie , Récupération fonctionnelle/physiologie , Accident vasculaire cérébral/physiopathologie , Animaux , Camphanes/pharmacologie , Cannabinoïdes/pharmacologie , Cannabinoïdes/usage thérapeutique , Cellules cultivées , Mâle , Souris , Souris de lignée C57BL , Neurogenèse/effets des médicaments et des substances chimiques , Pyrazoles/pharmacologie , Récepteur cannabinoïde de type CB2/agonistes , Récepteur cannabinoïde de type CB2/antagonistes et inhibiteurs , Récupération fonctionnelle/effets des médicaments et des substances chimiques , Accident vasculaire cérébral/traitement médicamenteux , Résultat thérapeutique
18.
Sci Rep ; 6: 29789, 2016 07 19.
Article de Anglais | MEDLINE | ID: mdl-27430371

RÉSUMÉ

Cannabinoids have shown to exert neuroprotective actions in animal models by acting at different targets including canonical cannabinoid receptors and PPARγ. We previously showed that VCE-003, a cannabigerol (CBG) quinone derivative, is a novel neuroprotective and anti-inflammatory cannabinoid acting through PPARγ. We have now generated a non-thiophilic VCE-003 derivative named VCE-003.2 that preserves the ability to activate PPARγ and analyzed its neuroprotective activity. This compound exerted a prosurvival action in progenitor cells during neuronal differentiation, which was prevented by a PPARγ antagonist, without affecting neural progenitor cell proliferation. In addition, VCE-003.2 attenuated quinolinic acid (QA)-induced cell death and caspase-3 activation and also reduced mutant huntingtin aggregates in striatal cells. The neuroprotective profile of VCE-003.2 was analyzed using in vivo models of striatal neurodegeneration induced by QA and 3-nitropropionic acid (3NP) administration. VCE-003.2 prevented medium spiny DARPP32(+) neuronal loss in these Huntington's-like disease mice models improving motor deficits, reactive astrogliosis and microglial activation. In the 3NP model VCE-003.2 inhibited the upregulation of proinflammatory markers and improved antioxidant defenses in the brain. These data lead us to consider VCE-003.2 to have high potential for the treatment of Huntington's disease (HD) and other neurodegenerative diseases with neuroinflammatory traits.


Sujet(s)
Cannabinoïdes/pharmacologie , Modèles animaux de maladie humaine , Maladie de Huntington/prévention et contrôle , Cellules souches neurales/effets des médicaments et des substances chimiques , Quinones/pharmacologie , Animaux , Différenciation cellulaire/effets des médicaments et des substances chimiques , Différenciation cellulaire/génétique , Lignée cellulaire , Lignée cellulaire tumorale , Survie cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Expression des gènes/effets des médicaments et des substances chimiques , Cellules HEK293 , Humains , Maladie de Huntington/anatomopathologie , Mâle , Cellules souches mésenchymateuses/effets des médicaments et des substances chimiques , Cellules souches mésenchymateuses/métabolisme , Souris de lignée C57BL , Cellules souches neurales/physiologie , Neuroprotecteurs/pharmacologie , Rats
19.
Proc Natl Acad Sci U S A ; 112(44): 13693-8, 2015 Nov 03.
Article de Anglais | MEDLINE | ID: mdl-26460022

RÉSUMÉ

The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.


Sujet(s)
Cortex cérébral/métabolisme , Dronabinol/administration et posologie , Exposition maternelle , Neurones/métabolisme , Récepteur cannabinoïde de type CB1/métabolisme , Animaux , Cortex cérébral/croissance et développement , Femelle , Souris , Grossesse
20.
Nat Commun ; 6: 6474, 2015 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-25753651

RÉSUMÉ

The proneural factor Ascl1 controls multiple steps of neurogenesis in the embryonic brain, including progenitor division and neuronal migration. Here we show that Cenpj, also known as CPAP, a microcephaly gene, is a transcriptional target of Ascl1 in the embryonic cerebral cortex. We have characterized the role of Cenpj during cortical development by in utero electroporation knockdown and found that silencing Cenpj in the ventricular zone disrupts centrosome biogenesis and randomizes the cleavage plane orientation of radial glia progenitors. Moreover, we show that downregulation of Cenpj in post-mitotic neurons increases stable microtubules and leads to slower neuronal migration, abnormal centrosome position and aberrant neuronal morphology. Moreover, rescue experiments shows that Cenpj mediates the role of Ascl1 in centrosome biogenesis in progenitor cells and in microtubule dynamics in migrating neurons. These data provide insights into genetic pathways controlling cortical development and primary microcephaly observed in humans with mutations in Cenpj.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Cortex cérébral/métabolisme , Protéines associées aux microtubules/génétique , Cellules souches neurales/métabolisme , Neurogenèse/génétique , Neurones/métabolisme , Animaux , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Division cellulaire , Mouvement cellulaire , Centrosome/métabolisme , Centrosome/ultrastructure , Cortex cérébral/cytologie , Électroporation , Embryon de mammifère , Régulation de l'expression des gènes au cours du développement , Injections ventriculaires , Souris , Souris transgéniques , Microtomie , Protéines associées aux microtubules/antagonistes et inhibiteurs , Protéines associées aux microtubules/métabolisme , Microtubules/métabolisme , Microtubules/ultrastructure , Cellules souches neurales/ultrastructure , Neurones/ultrastructure , Petit ARN interférent/génétique , Petit ARN interférent/métabolisme , Transduction du signal , Techniques de culture de tissus
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE