Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Med Res Arch ; 11(9)2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-38037598

RÉSUMÉ

Background: Comorbidities may influence the levels of blood-based biomarkers for Alzheimer's disease (AD). We investigated whether differences in risk factors or comorbid conditions might explain the discordance between clinical diagnosis and biomarker classifications in a multi-ethnic cohort of elderly individuals. Aims: To evaluate the relationship of medical conditions and other characteristics, including body mass index (BMI), vascular risk factors, and head injury, with cognitive impairment and blood-based biomarkers of AD, phosphorylated tau (P-tau 181, P-tau 217), in a multi-ethnic cohort. Methods: Three-hundred individuals, aged 65 and older, were selected from a prospective community-based cohort for equal representation among three racial/ethnic groups: non-Hispanic White, Hispanic/Latino and African American/Black. Participants were classified into four groups based on absence (Asym) or presence (Sym) of cognitive impairment and low (NEG) or high (POS) P-tau 217 or P-tau 181 levels, determined previously in the same cohort: (Asym/NEG, Asym/POS, Sym/NEG, Sym/POS). We examined differences in individual characteristics across the four groups. We performed post-hoc analysis examining the differences across biomarker and cognitive status. Results: P-tau 217 or P-tau 181 positive individuals had lower BMI than P-tau negative participants, regardless of symptom status. Symptomatic and asymptomatic participants did not differ in terms of BMI. BMI was not a mediator of the effect of P-tau 217 or P-tau 181 on dementia. Frequencies of other risk factors did not differ between the four groups of individuals. Conclusions: Participants with higher levels of P-tau 217 or P-tau 181 consistent with AD had lower BMI regardless of whether the individual was symptomatic. These findings suggest that weight loss may change with AD biomarker levels before onset of cognitive decline. They do not support BMI as a confounding variable. Further longitudinal studies could explore the relationship of risk factors with clinical diagnoses and biomarkers.

2.
J Prev Alzheimers Dis ; 9(4): 569-579, 2022.
Article de Anglais | MEDLINE | ID: mdl-36281661

RÉSUMÉ

Timely and accurate diagnosis of Alzheimer's disease (AD) in clinical practice remains challenging. PET and CSF biomarkers are the most widely used biomarkers to aid diagnosis in clinical research but present limitations for clinical practice (i.e., cost, accessibility). Emerging blood-based markers have the potential to be accurate, cost-effective, and easily accessible for widespread clinical use, and could facilitate timely diagnosis. The EU/US CTAD Task Force met in May 2022 in a virtual meeting to discuss pathways to implementation of blood-based markers in clinical practice. Specifically, the CTAD Task Force assessed: the state-of-art for blood-based markers, the current use of blood-based markers in clinical trials, the potential use of blood-based markers in clinical practice, the current challenges with blood-based markers, and the next steps needed for broader adoption in clinical practice.


Sujet(s)
Maladie d'Alzheimer , Humains , Maladie d'Alzheimer/traitement médicamenteux , Marqueurs biologiques , Comités consultatifs
3.
J Prev Alzheimers Dis ; 8(4): 414-424, 2021.
Article de Anglais | MEDLINE | ID: mdl-34585215

RÉSUMÉ

BACKGROUND: Donanemab (LY3002813) is an IgG1 antibody directed at an N­terminal pyroglutamate of amyloid beta epitope that is present only in brain amyloid plaques. OBJECTIVES: To assess effects of donanemab on brain amyloid plaque load after single and multiple intravenous doses, as well as pharmacokinetics, safety/tolerability, and immunogenicity. DESIGN: Phase 1b, investigator- and patient-blind, randomized, placebo-controlled study. SETTING: Patients recruited at clinical research sites in the United States and Japan. PARTICIPANTS: 61 amyloid plaque-positive patients with mild cognitive impairment due to Alzheimer's disease and mild-to-moderate Alzheimer's disease dementia. INTERVENTION: Six cohorts were dosed with donanemab: single dose 10-, 20- or 40- mg/kg (N = 18), multiple doses of 10-mg/kg every 2 weeks for 24 weeks (N = 10), and 10- or 20-mg/kg every 4 weeks for 72 weeks (N=18) or placebo (N = 15). MEASUREMENTS: Brain amyloid plaque load, using florbetapir positron emission tomography, was assessed up to 72 weeks. Safety was evaluated by occurrence of adverse events, magnetic resonance imaging, electrocardiogram, vital signs, laboratory testing, neurological monitoring, and immunogenicity. RESULTS: Treatment with donanemab resulted in rapid reduction of amyloid, even after a single dose. By 24 weeks, amyloid positron emission tomography mean changes from baseline for single donanemab doses in Centiloids were: -16.5 (standard error 11.22) 10-mg/kg intravenous; 40.0 (standard error 11.23) 20 mg/kg intravenous; and -49.6 (standard error 15.10) 40-mg/kg intravenous. Mean reduction of amyloid plaque in multiple dose cohorts by 24 weeks in Centiloids were: 55.8 (standard error 9.51) 10-mg/kg every 2 weeks; -50.2 (standard error 10.54) 10-mg/kg every 4 weeks; and -58.4 (standard error 9.66) 20-mg/kg every 4 weeks. Amyloid on average remained below baseline levels up to 72 weeks after a single dose of donanemab. Repeated dosing resulted in continued florbetapir positron emission tomography reductions over time compared to single dosing with 6 out of 28 patients attaining complete amyloid clearance within 24 weeks. Within these, 5 out of 10 patients in the 20 mg/kg every 4 weeks cohort attained complete amyloid clearance within 36 weeks. When dosing with donanemab was stopped after 24 weeks of repeat dosing in the 10 mg every 2 weeks cohort, florbetapir positron emission tomography reductions were sustained up to 72 weeks. For the single dose cohorts on day 1, dose proportional increases in donanemab pharmacokinetics were observed from 10 to 40 mg/kg. Dose proportional increases in pharmacokinetics were also observed at steady state with the multiple dose cohorts. Donanemab clearance was comparable across the dose levels. Mean donanemab elimination-half-life following 20 mg/kg single dose was 9.3 days with range of 5.6 to 16.2 days. Greater than 90% of patients had positive treatment-emergent antidrug antibodies with donanemab. However, overall, the treatment-emergent antidrug antibodies did not have a significant impact on pharmacokinetics. Donanemab was generally well tolerated. Amongst the 46 participants treated with donanemab, the following amyloid-related imaging abnormalities, common to the drug class, were observed: 12 vasogenic cerebral edema events (12 [19.7%] patients), 10 cerebral microhemorrhage events (6 [13.0%] patients), and 2 superficial siderosis events (2 [4.3%] patients). CONCLUSIONS: Single and multiple doses of donanemab demonstrated a rapid, robust, and sustained reduction up to 72 weeks in brain amyloid plaque despite treatment-emergent antidrug antibodies detected in most patients. Amyloid-related imaging abnormalities were the most common treatment-emergent event.


Sujet(s)
Maladie d'Alzheimer/traitement médicamenteux , Amyloïde/effets des médicaments et des substances chimiques , Anticorps monoclonaux/usage thérapeutique , Tomographie par émission de positons , Sujet âgé , Dérivés de l'aniline , Dysfonctionnement cognitif/traitement médicamenteux , Effets secondaires indésirables des médicaments , Éthylène glycols , Femelle , Humains , Japon , Mâle , Adulte d'âge moyen , Sécurité des patients , États-Unis
4.
Glycobiology ; 8(8): 755-60, 1998 Aug.
Article de Anglais | MEDLINE | ID: mdl-9639536

RÉSUMÉ

A simple, fast and sensitive method was developed to verify the presence of the sialyl Lewis(x) antigen on an N-linked glycoprotein. High performance liquid chromatography-electrospray mass spectrometry (HPLC-ESI/MS) was used to identify which of the five N-linked glycosylation sites of human plasma alpha1-acid-glycoprotein (orosomucoid, OMD) contain the sialyl Lewis(x) antigen. OMD was digested with proteolytic enzymes and analyzed by reversed phase chromatography coupled with on-line ESI/MS. A tandem mass spectrometry experiment was designed to detect the presence of the sialyl Lewis(x) antigen based on the observation of an 803 mass to charge ratio ( m/z ) ion produced in the intermediate pressure region of the ESI interface. The ESI/MS signal at m/z 803 is consistent with an oxonium ion for a glycan structure containing NeuAc, Gal, GlcNAc, and Fuc. The identity of the m/z 803 ion was confirmed by ESI/MS/MS analysis of the m/z 803 fragment ion and comparison with a sialyl Lewis(x) standard. The stereochemistry and linkage positions were assigned using previous NMR analysis but could be determined with permethylation analysis if necessary. The analysis of OMD gave a pattern showing signal for the sialyl Lewis(x) antigen coeluting with each of the five N-linked glycopeptides. The ability to monitor sialyl Lewis(x) expression at each of the five sites is of interest in the study of OMD's role in inflammatory diseases.


Sujet(s)
Oligosaccharides/métabolisme , Orosomucoïde/métabolisme , Séquence d'acides aminés , Chromatographie en phase liquide à haute performance/méthodes , Humains , Spectrométrie de masse/méthodes , Données de séquences moléculaires , Antigène sialyl Lewis X
5.
Anal Biochem ; 257(2): 176-85, 1998 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-9514787

RÉSUMÉ

The chemical modification reagent diethylpyrocarbonate (DEPC) was used to modify alpha 1-acid glycoprotein (orosomucoid, OMD) under various conditions. The extents of DEPC modification of the histidine and tyrosine residues were followed by UV spectrophotometry. The resulting modified OMD was analyzed using enzyme digestion, reverse-phase HPLC, electrospray ionization-mass spectrometry (ESI/MS), and matrix-assisted laser desorption ionization time-of-flight-mass spectrometry (MALDI-TOF/MS). The inherent problem of instability of DEPC-modified histidine residues was overcome by adjusting the time scale of the postreaction processing of modified OMD. There were observed differences in reactivity of histidine 97 and histidine 100 that were consistent throughout the pH range 6-8. Furthermore, several lysine residues were modified and the amount of modification increased over the pH range 6-8. These experiments show that HPLC-ESI/MS and MALDI-TOF/MS analysis coupled with enzyme digestion provide the necessary information to describe the reaction of DEPC with OMD. In addition, the results provide the carbethoxy-histidine stability and histidine reactivity information of DEPC-modified OMD necessary for the design of experiments to characterize the drug binding properties of OMD.


Sujet(s)
Dicarbonate de diéthyle/composition chimique , Orosomucoïde/analyse , Orosomucoïde/composition chimique , Séquence d'acides aminés , Chromatographie en phase liquide à haute performance , Chymotrypsine/métabolisme , Histidine/composition chimique , Concentration en ions d'hydrogène , Lysine/composition chimique , Données de séquences moléculaires , Orosomucoïde/métabolisme , Serine endopeptidases/métabolisme , Spectrométrie de masse MALDI , Spectrophotométrie UV , Trypsine/métabolisme , Tyrosine/composition chimique
6.
Free Radic Biol Med ; 22(5): 807-12, 1997.
Article de Anglais | MEDLINE | ID: mdl-9119249

RÉSUMÉ

3,4-Dihydro-3,3-dimethyl-isoquinoline-2-oxide (MDL 101,002) is a conformationally constrained cyclic analog of the known spin trap alpha-phenyl N-tert-butyl nitrone (PBN). Because of PBN's ability to scavenge free radicals, MDL 101,002 is currently being evaluated in stroke models as a means to ameliorate the oxidative insult associated with reperfusion injury. To augment our understanding of the radical scavenging mechanism of this potential drug, MDL 101,002 was incubated with soybean lipoxygenase in the presence of linoleic acid to study the interaction between MDL 101,002 and free radicals formed during lipid peroxidation. Analysis of the reaction mixture was performed by high performance liquid chromatography using normal phase conditions with detection by atmospheric pressure chemical ionization mass spectrometry (APCI-MS). Similar to the work by Iwahashi et al. [Arch. Biochem. Biophys., 1991, 285, 172], who studied the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (4-POBN), an adduct that suggested the trapping of pentyl radicals by MDL 101,002 was observed. However, the apparent molecular ion for this adduct (246 Da) was 1 Da lower than would be predicted if a pentyl radical had simply added to MDL 101,002. In addition, the adduct exhibited significant absorbance at 304 nm, consistent with the unsaturated nitrone structure of MDL 101,002. To account for these observations, it is postulated that, after the initial capture of a pentyl radical, subsequent abstraction of a hydrogen atom by a neighboring radical occurs to regenerate a nitrone (1-pentyl analog of MDL 101,002). We present evidence for this adduct and offer a mechanism for its formation. These findings indicate that mass spectroscopic analysis of stable nitrone radical adducts may be useful in the identification of radical-dependent damage in vivo and possibly in clinical development of MDL 101,002 as an antioxidant pharmaceutical.


Sujet(s)
Isoquinoléines/composition chimique , Oxydes d'azote/composition chimique , Marqueurs de spin , Antioxydants/composition chimique , Chromatographie en phase liquide à haute performance , Piégeurs de radicaux libres/composition chimique , Radicaux libres/composition chimique , Peroxydation lipidique , Lipoxygenase/métabolisme , Spectrométrie de masse , Glycine max/enzymologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE