Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Adv Colloid Interface Sci ; 332: 103268, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39121831

RÉSUMÉ

Metal-organic frameworks (MOFs) and MXenes have gained prominence in the queue of advanced material research. Both materials' outstanding physical and chemical characteristics prominently promote their utilization in diverse fields, especially the electrochemical energy storage (EES) domain. The collective contribution of extremely high specific surface area (SSA), customizable pores, and abundant active sites propose MOFs as integral materials for EES devices. However, conventional MOFs endure low conductivity, constraining their utility in practical applications. The development of hybrid materials via integrating MOFs with various conductive materials stands out as an effective approach to improvising MOF's conductivity. MXenes, formulated as two-dimensional (2D) carbides and nitrides of transition metals, fall in the category of the latest 2D materials. MXenes possess extensive structural diversity, impressive conductivity, and rich surface chemical characteristics. The electrochemical characteristics of MOF@MXene hybrids outperform MOFs and MXenes individually, credited to the synergistic effect of both components. Additionally, the MOF derivatives coupled with MXene, exhibiting unique morphologies, demonstrate outstanding electrochemical performance. The important attributes of MOF@MXene hybrids, including the various synthesis protocols, have been summarized in this review. This review delves into the architectural analysis of both MOFs and MXenes, along with their advanced hybrids. Furthermore, the comprehensive survey of the latest advancements in MOF@MXene hybrids as electroactive material for supercapacitors (SCs) is the prime objective of this review. The review concludes with an elaborate discussion of the current challenges faced and the future outlooks for optimizing MOF@MXene composites.

2.
RSC Adv ; 13(48): 33675-33687, 2023 Nov 16.
Article de Anglais | MEDLINE | ID: mdl-38020000

RÉSUMÉ

This paper investigates the synthesis and luminescence characteristics of Tm3+/Tb3+/Eu3+ co-doped Sr4Nb2O9 (SNB) phosphors as potential candidates for white light-emitting diodes (WLEDs). The study explores the energy transfer mechanisms and color-tunable characteristics of these phosphors. The SNB phosphors were prepared using a solid-state reaction method, and their structural and morphological properties were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Fourier-transform infrared (FT-IR) spectroscopy. The diffuse reflectance, photoluminescence (PL) and time resolved photoluminescence (TRPL) properties were investigated, revealing efficient energy transfer processes from Tm3+ to Tb3+ and Eu3+ ions. The energy transfer mechanisms were determined through critical distance calculations and analysis of multipolar interactions. The co-doped phosphors exhibited tunable emission colors ranging from blue to white light, with controllable correlated color temperatures (CCTs) and high color rendering indices (CRIs). The CIE chromaticity coordinates were optimized to approach neutral white light. The PL intensity is maintained at 81.19% at 150 °C of that of room temperature which showcases the remarkable thermal stability of the as-prepared phosphors. The results highlight the potential of Tm3+/Tb3+/Eu3+ co-doped SNB phosphors for generating high-quality, color-tunable white light for advanced lighting applications.

3.
J Chem Phys ; 159(10)2023 Sep 14.
Article de Anglais | MEDLINE | ID: mdl-37698194

RÉSUMÉ

The electrical conductivity of Na2O substituted zinc borate glasses has been studied in the frequency range of 10 mHz to 1 MHz and in the temperature range from 313 to 573 K. The conduction mechanism has been ascertained using the values of the frequency exponent (s) extracted from the fitting of experimental data of the real part of electric conductivity in light of the Almond-West equation. Depending on the glass composition, the ac conduction in the glasses happened via correlated barrier hopping and non-overlapping small polaron tunneling conduction models. The electric modulus studies support the assertion of composition dependent conduction mechanisms. Furthermore, electronic conduction and ionic conduction have been studied from impedance investigations. Equivalent circuit models were used to fit the Nyquist and Bode plots of each sample at the temperatures under consideration. It has been found that the activation energy values calculated from conductivity, electric modulus, and impedance measurements are more or less the same.

4.
RSC Adv ; 13(22): 15366-15378, 2023 May 15.
Article de Anglais | MEDLINE | ID: mdl-37223647

RÉSUMÉ

A series of Ce3+ doped La1-xCexAlO3/MgO (x = 0, 0.7, 0.9, 1.0 and 2.0 mol%) nano-composites have successfully been synthesized employing the Pechini sol-gel method. XRD profiles assisted with Rietveld refinement results manifested the rhombohedral/face-centered structures of the two phases of the generated composite. Thermogravimetric results corroborate the crystallization temperature of the compound to be 900 °C, that further remains stable up to 1200 °C. Materials have been found to be wide band gap semi-conductors having Eg in the range of 5.5-5.8 eV. Photoluminescence studies reveal their green emission under UV excitation of 272 nm. Application of Dexter's theory and Burshtein model to PL and TRPL profiles, respectively reveals the q-q multipole interlinkages to be the viable cause of concentration quenching beyond optimum concentration of 0.9 mol%. Shifting of the energy transfer route from cross-relaxation to migration assisted mechanism with Ce3+ concentration has also been investigated. Other luminescence based parameters such as energy transfer probabilities, efficiencies, CIE and CCT have also been found to be in an admirable range. From the aforesaid results, it was observed that the optimized nano-composite (i.e. La1-xCexAlO3/MgO (x = 0.9 mol%)) can also be utilized for latent finger-printing (LFP) application that evinces its versatility for photonic as well as imaging applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE