Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Hepatology ; 77(1): 124-143, 2023 01 01.
Article de Anglais | MEDLINE | ID: mdl-35429173

RÉSUMÉ

BACKGROUND AIMS: As a global health threat, NASH has been confirmed to be a chronic progressive liver disease that is strongly associated with obesity. However, no approved drugs or efficient therapeutic strategies are valid, mainly because its complicated pathological processes is underestimated. APPROACH RESULTS: We identified the RING-type E3 ubiquitin transferase-tripartite motif-containing protein 31 (TRIM31), a member of the E3 ubiquitin ligases family, as an efficient endogenous inhibitor of transforming growth factor-beta-activated kinase 1 (mitogen-activated protein kinase kinase kinase 7; MAP3K7), and we further confirmed that TRIM31 is an MAP3K7-interacting protein and promotes MAP3K7 degradation by enhancing ubiquitination of K48 linkage in hepatocytes. Hepatocyte-specific Trim31 deletion blocks hepatic metabolism homeostasis, concomitant with glucose metabolic syndrome, lipid accumulation, up-regulated inflammation, and dramatically facilitates NASH progression. Inversely, transgenic overexpression, lentivirus, or adeno-associated virus-mediated Trim31 gene therapy restrain NASH in three dietary mice models. Mechanistically, in response to metabolic insults, TRIM31 interacts with MAP3K7 and conjugates K48-linked ubiquitination chains to promote MAP3K7 degradation, thus blocking MAP3K7 abundance and its downstream signaling cascade activation in hepatocytes. CONCLUSIONS: TRIM31 may serve as a promising therapeutic target for NASH treatment and associated metabolic disorders.


Sujet(s)
Stéatose hépatique non alcoolique , Protéines à motif tripartite , Ubiquitin-protein ligases , Animaux , Souris , MAP Kinase Kinase Kinases/métabolisme , Stéatose hépatique non alcoolique/métabolisme , Stéatose hépatique non alcoolique/prévention et contrôle , Ubiquitin-protein ligases/métabolisme , Ubiquitination , Humains , Protéines à motif tripartite/métabolisme
2.
J Hazard Mater ; 400: 123158, 2020 12 05.
Article de Anglais | MEDLINE | ID: mdl-32947736

RÉSUMÉ

Ambient particulate matter (PM2.5)-induced metabolic syndromes is a critical contributor to the pathological processes of neurological diseases, but the underlying molecular mechanisms remain poorly understood. The rhomboid 5 homolog 2 (Rhbdf2), an essential regulator in the production of TNF-α, has recently been confirmed to exhibit a key role in regulating inflammation-associated diseases. Thus, we examined whether Rhbdf2 contributes to hypothalamic inflammation via NF-κB associated inflammation activation in long-term PM2.5-exposed mice. Specifically, proopiomelanocortin-specific Rhbdf2 deficiency (Rhbdf2Pomc) and corresponding littermates control mice were used for the current study. After 24 weeks of PM2.5 inhalation, systemic-metabolism disorder was confirmed in WT mice in terms of impaired glucose tolerance, increased insulin resistance, and high blood pressure. Markedly, PM2.5-treated Rhbdf2Pomc mice displayed a significantly opposite trend in these parameters compared with those of the controls group. We next confirmed hypothalamic injury accompanied by abnormal POMC neurons loss, as indicated by increased inflammatory cytokines, chemokines, and oxidative-stress levels and decreased antioxidant activity. These results were further supported by blood routine examination. In summary, our findings suggest that Rhbdf2 plays an important role in exacerbating PM2.5-stimulated POMC neurons loss associated hypothalamic injury, thus providing a possible target for blocking pathological development of air pollution-associated diseases.


Sujet(s)
Polluants atmosphériques , Matière particulaire , Polluants atmosphériques/toxicité , Animaux , Inflammation/induit chimiquement , Inflammation/génétique , Souris , Neurones , Stress oxydatif , Matière particulaire/toxicité , Pro-opiomélanocortine
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...