Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Nat Biotechnol ; 40(10): 1500-1508, 2022 10.
Article de Anglais | MEDLINE | ID: mdl-35654979

RÉSUMÉ

Therapeutics based on short interfering RNAs (siRNAs) delivered to hepatocytes have been approved, but new delivery solutions are needed to target additional organs. Here we show that conjugation of 2'-O-hexadecyl (C16) to siRNAs enables safe, potent and durable silencing in the central nervous system (CNS), eye and lung in rodents and non-human primates with broad cell type specificity. We show that intrathecally or intracerebroventricularly delivered C16-siRNAs were active across CNS regions and cell types, with sustained RNA interference (RNAi) activity for at least 3 months. Similarly, intravitreal administration to the eye or intranasal administration to the lung resulted in a potent and durable knockdown. The preclinical efficacy of an siRNA targeting the amyloid precursor protein was evaluated through intracerebroventricular dosing in a mouse model of Alzheimer's disease, resulting in amelioration of physiological and behavioral deficits. Altogether, C16 conjugation of siRNAs has the potential for safe therapeutic silencing of target genes outside the liver with infrequent dosing.


Sujet(s)
Précurseur de la protéine bêta-amyloïde , Thérapie par l'interférence par ARN , Animaux , Souris , Primates/génétique , Primates/métabolisme , Interférence par ARN , Petit ARN interférent/génétique , Petit ARN interférent/usage thérapeutique
2.
Biomaterials ; 141: 314-329, 2017 Oct.
Article de Anglais | MEDLINE | ID: mdl-28711779

RÉSUMÉ

Loss of the microvascular (MV) network results in tissue ischemia, loss of tissue function, and is a hallmark of chronic diseases. The incorporation of a functional vascular network with that of the host remains a challenge to utilizing engineered tissues in clinically relevant therapies. We showed that vascular-bed-specific endothelial cells (ECs) exhibit differing angiogenic capacities, with kidney microvascular endothelial cells (MVECs) being the most deficient, and sought to explore the underlying mechanism. Constitutive activation of the phosphatase PTEN in kidney MVECs resulted in impaired PI3K/AKT activity in response to vascular endothelial growth factor (VEGF). Suppression of PTEN in vivo resulted in microvascular regeneration, but was insufficient to improve tissue function. Promoter analysis of the differentially regulated genes in KMVECs suggests that the transcription factor FOXO1 is highly active and RNAseq analysis revealed that hyperactive FOXO1 inhibits VEGF-Notch-dependent tip-cell formation by direct and indirect inhibition of DLL4 expression in response to VEGF. Inhibition of FOXO1 enhanced angiogenesis in human bio-engineered capillaries, and resulted in microvascular regeneration and improved function in mouse models of injury-repair.


Sujet(s)
Protéine O1 à motif en tête de fourche/métabolisme , Rein/vascularisation , Rein/physiopathologie , Microvaisseaux/physiopathologie , Néovascularisation physiologique , Adulte , Animaux , Cellules cultivées , Cellules endothéliales/métabolisme , Cellules endothéliales/anatomopathologie , Humains , Rein/traumatismes , Rein/métabolisme , Mâle , Souris , Souris de lignée C57BL , Microvaisseaux/métabolisme , Microvaisseaux/physiologie , Facteur de croissance endothéliale vasculaire de type A/métabolisme , Récepteur-2 au facteur croissance endothéliale vasculaire/métabolisme
3.
Biomaterials ; 35(27): 7786-99, 2014 Sep.
Article de Anglais | MEDLINE | ID: mdl-24930852

RÉSUMÉ

Adhesion molecule signaling is critical to human pluripotent stem cell (hPSC) survival, self-renewal, and differentiation. Thus, hPSCs are grown as clumps of cells on feeder cell layers or poorly defined extracellular matrices such as Matrigel. We sought to define a small molecule that would initiate adhesion-based signaling to serve as a basis for a defined substrate for hPSC culture. Soluble angiopoeitin-1 (Ang-1)-derived peptide QHREDGS added to defined serum-free media increased hPSC colony cell number and size during long- and short-term culture when grown on feeder cell layers or Matrigel, i.e. on standard substrates, without affecting hPSC morphology, growth rate or the ability to differentiate into multiple lineages both in vitro and in vivo. Importantly, QHREDGS treatment decreased hPSC apoptosis during routine passaging and single-cell dissociation. Mechanistically, the interaction of QHREDGS with ß1-integrins increased expression of integrin-linked kinase (ILK), increased expression and activation of extracellular signal-regulated kinases 1/2 (ERK1/2), and decreased caspase-3/7 activity. QHREDGS immobilization to polyethylene glycol hydrogels significantly increased cell adhesion in a dose-dependent manner. We propose QHREDGS as a small molecule inhibitor of hPSC apoptosis and the basis of an affordable defined substrate for hPSC maintenance.


Sujet(s)
Angiopoïétine-1/pharmacologie , Apoptose/effets des médicaments et des substances chimiques , Techniques de culture cellulaire/méthodes , Cellules souches pluripotentes induites/cytologie , Peptides/pharmacologie , Animaux , Caspases/métabolisme , Adhérence cellulaire/effets des médicaments et des substances chimiques , Numération cellulaire , Prolifération cellulaire/effets des médicaments et des substances chimiques , Taille de la cellule/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Activation enzymatique/effets des médicaments et des substances chimiques , Extracellular Signal-Regulated MAP Kinases/métabolisme , Cellules nourricières/cytologie , Cellules nourricières/effets des médicaments et des substances chimiques , Humains , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Cellules souches pluripotentes induites/enzymologie , Antigènes CD29/métabolisme , Souris , Protein-Serine-Threonine Kinases/métabolisme , Facteurs temps
4.
Dev Cell ; 26(1): 45-58, 2013 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-23830865

RÉSUMÉ

Vegf signaling specifies arterial fate during early vascular development by inducing the transcription of Delta-like 4 (Dll4), the earliest Notch ligand gene expressed in arterial precursor cells. Dll4 expression precedes that of Notch receptors in arteries, and factors that direct its arterial-specific expression are not known. To identify the transcriptional program that initiates arterial Dll4 expression, we characterized an arterial-specific and Vegf-responsive enhancer of Dll4. Our findings demonstrate that Notch signaling is not required for initiation of Dll4 expression in arteries and suggest that Notch instead functions as a maintenance factor. Importantly, we find that Vegf signaling activates MAP kinase (MAPK)-dependent E26 transformation-specific sequence (ETS) factors in the arterial endothelium to drive expression of Dll4 and Notch4. These findings identify a Vegf/MAPK-dependent transcriptional pathway that specifies arterial identity by activating Notch signaling components and illustrate how signaling cascades can modulate broadly expressed transcription factors to achieve tissue-specific transcriptional outputs.


Sujet(s)
Aorte/physiologie , Régulation de l'expression des gènes au cours du développement , Facteur de croissance endothéliale vasculaire de type A/métabolisme , Protéines adaptatrices de la transduction du signal , Animaux , Animal génétiquement modifié/embryologie , Animal génétiquement modifié/métabolisme , Aorte/métabolisme , Sites de fixation , Protéines de liaison au calcium , Endocarde/embryologie , Endocarde/métabolisme , Éléments activateurs (génétique) , Protéines à fluorescence verte/génétique , Protéines à fluorescence verte/métabolisme , Cellules endothéliales de la veine ombilicale humaine/métabolisme , Humains , Protéines et peptides de signalisation intracellulaire/génétique , Protéines et peptides de signalisation intracellulaire/métabolisme , Système de signalisation des MAP kinases , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Souris , Spécificité d'organe , Protéines proto-oncogènes/génétique , Protéines proto-oncogènes/métabolisme , Récepteur Notch4 , Récepteurs Notch/génétique , Récepteurs Notch/métabolisme , Transactivateurs/génétique , Transactivateurs/métabolisme , Transcription génétique , Régulateur transcriptionnel ERG , Facteur de croissance endothéliale vasculaire de type A/génétique , Danio zébré/embryologie , Danio zébré/génétique , Danio zébré/métabolisme
5.
Arterioscler Thromb Vasc Biol ; 33(2): 193-200, 2013 Feb.
Article de Anglais | MEDLINE | ID: mdl-23325476

RÉSUMÉ

The regulated response of endothelial cells to signals in their environment is not only critical for the de novo formation of primordial vascular networks during early development (ie, vasculogenesis), but is also required for the subsequent growth and remodeling of new blood vessels from preexisting ones (ie, angiogenesis). Vascular endothelial growth factors (Vegfs) and their endothelial cell-specific receptors play a crucial role in nearly all aspects of blood vessel growth. How the outputs from these pathways affect and coordinate endothelial behavior is an area of intense research. Recently, numerous studies have highlighted roles for microRNAs in modulating Vegf signaling output in several different contexts. In this review, we will provide an overview of how small RNAs regulate multiple aspects of the Vegf signaling pathway. In particular, we highlight areas where identification of microRNAs and their targets has provided new insight into the role of downstream effectors in modulating Vegf output during development. As Vegf plays a broad role in multiple aspects of endothelial biology and has become a target for therapeutic manipulation of pathological blood vessel growth, microRNAs that affect Vegf signaling output will undoubtedly be major targets of clinical value.


Sujet(s)
Vaisseaux sanguins/métabolisme , Cellules endothéliales/métabolisme , microARN/métabolisme , Néovascularisation physiologique , Transduction du signal , Facteur de croissance endothéliale vasculaire de type A/métabolisme , Animaux , Vaisseaux sanguins/embryologie , Régulation de l'expression des gènes au cours du développement , Humains , Protéines et peptides de signalisation intracellulaire/métabolisme , Morphogenèse , Néovascularisation physiologique/génétique , Récepteurs aux facteurs de croissance endothéliale vasculaire/métabolisme , Transduction du signal/génétique , Facteur de croissance endothéliale vasculaire de type A/génétique
6.
Stem Cells Dev ; 21(15): 2838-51, 2012 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-22594450

RÉSUMÉ

Inducing a stable and predictable program of neural cell fate in pluripotent cells in vitro is an important goal for utilizing these cells for modeling human disease mechanisms. However, the extent to which in vitro neural specification recapitulates in vivo neural specification remains to be fully established. We previously demonstrated that in the mouse embryo, activation of fibroblast growth factor (FGF) signalling promotes definitive neural stem cell (NSC) development through the upregulation of the transcription factor Zfhx1b. Here, we asked whether Zfhx1b is similarly required during neural lineage development of embryonic stem (ES) cells. Zfhx1b gene expression is rapidly upregulated in mouse ES cells cultured in a permissive neural-inducing environment, compared to ES cells in a standard pluripotency maintenance environment, and is potentiated by FGF signalling. However, overexpression of Zfhx1b in ES cells in maintenance conditions, containing serum and leukemia inhibitory factor (LIF), is sufficient to induce Sox1 expression, a marker found in neural precursors and to promote definitive NSC colony formation. Knockdown of Zfhx1b in ES cells using siRNA did not affect the initial transition of ES cells to a neural cell fate, but did diminish the ability of these neural cells to develop further into definitive NSCs. Thus, our findings using ES cells are congruent with evidence from mouse embryos and support a model, whereby intercellular FGF signaling induces Zfhx1b, which promotes the development of definitive NSCs subsequent to an initial neural specification event that is independent of this pathway.


Sujet(s)
Différenciation cellulaire , Cellules souches embryonnaires/physiologie , Protéines à homéodomaine/physiologie , Cellules souches neurales/métabolisme , Protéines de répression/physiologie , Animaux , Antigènes de différenciation/génétique , Antigènes de différenciation/métabolisme , Plan d'organisation du corps , Cellules cultivées , Techniques de coculture , Cellules souches embryonnaires/métabolisme , Facteur de croissance fibroblastique de type 8/physiologie , Expression des gènes , Glycoprotéines/physiologie , Protéines à homéodomaine/génétique , Protéines à homéodomaine/métabolisme , Protéines et peptides de signalisation intercellulaire/physiologie , Facteur inhibiteur de la leucémie/physiologie , Souris , Protéines de répression/génétique , Protéines de répression/métabolisme , Transduction du signal , Régulation positive , Facteur de transcription Zeb2
7.
Neural Dev ; 5: 13, 2010 May 06.
Article de Anglais | MEDLINE | ID: mdl-20459606

RÉSUMÉ

BACKGROUND: Mouse definitive neural stem cells (NSCs) are derived from a population of LIF-responsive primitive neural stem cells (pNSCs) within the neurectoderm, yet details on the early signaling and transcriptional mechanisms that control this lineage transition are lacking. Here we tested whether FGF and Wnt signaling pathways can regulate Zfhx1b expression to control early neural stem cell development. RESULTS: By microinjecting FGF8b into the pro-amniotic cavity ex vivo at 7.0 days post-coitum (dpc) and culturing whole embryos, we demonstrate that neurectoderm-specific gene expression (for example, Sox2, Nestin, Zfhx1b) is increased, whereas Wnt3a represses neurectoderm gene expression. To determine whether FGF signaling also mediates the lineage transition from a pNSC to a NSC, 7.0-dpc embryos were microinjected with either FGF8b or inhibitors of the FGF receptor-MAP kinase signaling pathway ex vivo, cultured as whole embryos to approximately 8.5 dpc and assayed for clonal NSC colony formation. We show that pre-activation of FGF signaling in the anterior neurectoderm causes an increase in the number of colony forming NSCs derived later from the anterior neural plate, whereas inhibition of FGF signaling significantly reduces the number of NSC colonies. Interestingly, inhibition of FGF signaling causes the persistence of LIF-responsive pNSCs within the anterior neural plate and over-expression of Zfhx1b in these cells is sufficient to rescue the transition from a LIF-responsive pNSC to an FGF-responsive NSC. CONCLUSION: Our data suggest that definitive NSC fate specification in the mouse neurectoderm is facilitated by FGF activation of Zfhx1b.


Sujet(s)
Ectoderme/embryologie , Facteurs de croissance fibroblastique/génétique , Protéines à homéodomaine/génétique , Système nerveux/embryologie , Neurogenèse/génétique , Protéines de répression/génétique , Cellules souches/métabolisme , Animaux , Différenciation cellulaire/génétique , Lignage cellulaire/effets des médicaments et des substances chimiques , Lignage cellulaire/génétique , Prolifération cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Test clonogénique , Facteur de croissance fibroblastique de type 8/génétique , Facteur de croissance fibroblastique de type 8/pharmacologie , Facteurs de croissance fibroblastique/pharmacologie , Régulation de l'expression des gènes au cours du développement/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes au cours du développement/génétique , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Système de signalisation des MAP kinases/physiologie , Souris , Tube neural/embryologie , Neurogenèse/effets des médicaments et des substances chimiques , Neurones/cytologie , Neurones/métabolisme , Récepteur facteur croissance fibroblaste/agonistes , Récepteur facteur croissance fibroblaste/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Transduction du signal/génétique , Cellules souches/cytologie , Cellules souches/effets des médicaments et des substances chimiques , Protéines de type Wingless/génétique , Protéines de type Wingless/pharmacologie , Protéine Wnt3 , Protéine Wnt3A , Facteur de transcription Zeb2
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE