Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Can J Microbiol ; 69(2): 103-116, 2023 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-36379032

RÉSUMÉ

Chemical weed control is an effective method, but has proved hazardous for humans, environment, and soil biodiversity. Use of allelopathic bacteria may be more efficient and sustainable weed control measure. The bacterial inoculants have never been studied in context of their interaction with weed root exudates and precursor-dependent production of the natural phytotoxins (cyanide, cytolytic enzymes and auxin) by these strains to understand their weed suppression and wheat growth promotion abilities. Therefore, root exudates of Avena fatua, Phalaris minor, Rumex dentatus, and wheat were quantified and their role in microbial root colonization and secondary metabolite production, i.e., cyanide, cytolytic enzymes, phenolics, and elevated auxin concentration, was studied. The results depicted l-tryptophan and glycine as major contributors of elevated cyanide and elevated levels in weed rhizosphere by the studied Pseudomonas strains, through their higher root colonization ability in weeds as compared with wheat. Furthermore, the higher root colonization also enhanced p-coumaric acid (photosynthesis inhibitor by impairing cytochrome c oxidase activity in plants) and cytolytic enzyme (root cell wall degradation) concentration in weed rhizosphere. In conclusion, the differential root colonization of wheat and weeds by these strains is responsible for enhancing weed suppression (enhancing phytotoxic effect) and wheat growth promotion (lowering phytotoxic effect).


Sujet(s)
Triticum , Lutte contre les mauvaises herbes , Humains , Triticum/métabolisme , Lutte contre les mauvaises herbes/méthodes , Mauvaises herbes , Bactéries , Acides indolacétiques/métabolisme
2.
Front Nutr ; 9: 717064, 2022.
Article de Anglais | MEDLINE | ID: mdl-35356730

RÉSUMÉ

Zinc (Zn) deficiency in humans is an emerging global health issue affecting approximately two billion people across the globe. The situation prevails due to the intake of Zn deficient grains and vegetables worldwide. Clinical identification of Zn deficiency in humans remains problematic because the symptoms do not appear until impair the vital organs, such as the gastrointestinal track, central nervous system, immune system, skeletal, and nervous system. Lower Zn body levels are also responsible for multiple physiological disorders, such as apoptosis, organs destruction, DNA injuries, and oxidative damage to the cellular components through reactive oxygen species (ROS). The oxidative damage causes chronic inflammation lead toward several chronic diseases, such as heart diseases, cancers, alcohol-related malady, muscular contraction, and neuro-pathogenesis. The present review focused on the physiological and growth-related changes in humans under Zn deficient conditions, mechanisms adopted by the human body under Zn deficiency for the proper functioning of the body systems, and the importance of nutritional and nutraceutical approaches to overcome Zn deficiency in humans and concluded that the biofortified food is the best source of Zn as compared to the chemical supplementation to avoid their negative impacts on human.

3.
Front Plant Sci ; 13: 1094551, 2022.
Article de Anglais | MEDLINE | ID: mdl-36816488

RÉSUMÉ

Introduction: The burgeoning population of the world is causing food insecurity not only by less food availability but also by the malnutrition of essential nutrients and vitamins. Malnutrition is mostly linked with food having micronutrients lower than the optimal concentration of that specific food commodity and becoming an emerging challenge over the globe. Microbial biofortification in agriculture ensures nutritional security through microbial nitrogen fixation, and improved phosphate and zinc solubilization, which increase the uptake of these nutrients. The present study evaluates the novel plant growth-promoting rhizobacteria (PGPR) to biofortify maize gain. Methods: For this purpose, a pot and two field experiments for maize were conducted. PGPRs were applied alone and in combination for a better understanding of the biofortification potential of these strains. At physiological maturity, the growth parameters, and at harvest, the yield, microbial population, and nutritional status of maize were determined. Results and discussion: Results revealed that the consortium (ZM27+ZM63+S10) has caused the maximum increase in growth under pot studies like plant height (31%), shoot fresh weight (28%), shoot dry weight (27%), root fresh (33%) and dry weights (29%), and microbial count (21%) in the maize rhizosphere. The mineral analysis of the pot trial also revealed that consortium of ZM27+ZM63+S10 has caused 28, 16, 20, 11 and 11% increases in P, N, K, Fe, and Zn contents in maize, respectively, as compared to un-inoculated treatment in pot studies. A similar trend of results was also observed in both field trials as the consortium of ZM27+ZM63+S10 caused the maximum increase in not only growth and biological properties but also caused maximum biofortification of mineral nutrients in maize grains. The grain yield and 1000-grain weight were also found significantly higher 17 and 12%, respectively, under consortium application as compared to control. So, it can be concluded from these significant results obtained from the PGPR consortium application that microbial inoculants play a significant role in enhancing the growth, yield, and quality of the maize. However, the extensive evaluation of the consortium may help in the formulation of a biofertilizer for sustainable production and biofortification of maize to cope with nutritional security.

4.
Environ Monit Assess ; 193(8): 515, 2021 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-34304322

RÉSUMÉ

The current study investigated the influence of exopolysaccharides (EPSs) producing plant growth-promoting rhizobacteria (PGPR) on the growth, physiology, and soil properties. The pre-isolated and compatible EPS producing PGPR strains were first screened based on improvement in soil aggregates in an incubation study. The screened strains (Rhizobium phaseoli strain Mn-6, Pseudomonas bathysetes strain LB5, and unidentified strain R2) were then employed in pot study for assessing improvements in maize growth, physiology, and soil properties. Eight treatments including T1 = control, T2 = Mn-6, T3 = R2, T4 = LB5, T5 = Mn-6 + R2, T6 = Mn-6 + LB5, T7 = R2 + LB5, and T8 = Mn-6 + R2 + LB5 were applied in completely randomized design (CRD) hexa replicated (half for root and half for soil, and yield attributes). The results depicted that among various treatments, the application of PGPR strain Mn-6 increased plant height, root length, root fresh and dry weight, root length density, SPAD value, leaf areas index, photosynthesis rate, transpiration, and stomatal conductance by 24, 79, 72, 90, 49, 35, 23, 21, 75, and 77%, respectively, compared with non-inoculated treatment. Similarly, significant improvement in maize yield and soil physical properties was also observed in response to the application of EPS-producing PGPR. Therefore, it is concluded that the application of EPS producing PGPR is an effective strategy to improve plant growth, physiology, yield, and soil physical properties. Moreover, EPS-producing PGPR should be exploited in field studies for their potential in improving plant growth and soil properties.


Sujet(s)
Surveillance de l'environnement , Sol , Développement des plantes , Racines de plante , Microbiologie du sol , Zea mays
5.
Can J Microbiol ; 66(5): 368-376, 2020 May.
Article de Anglais | MEDLINE | ID: mdl-32040347

RÉSUMÉ

Conventional weed control methods often have environmental impact. The present study was conducted to screen selected accessions of Pseudomonas for both potential biocontrol of Phalaris minor and Avena fatua and potential concurrent growth promotion of wheat. The four Pseudomonas strains (B11, T19, T24, and T75) were found positive for cyanide production, siderophore production, phosphorus solubilization, oxidase activity, catalase activity, and ACC deaminase activity in vitro. These strains were phytotoxic, causing up to 73.3% mortality in the lettuce seedling bioassay. Consortia of compatible Pseudomonas strains increased A. fatua and P. minor seedling mortality up to 50.0% and 56.7%, respectively, and reduced root length up to 73.8% and 53.9%, respectively, as compared with the uninoculated control. Consortia of compatible Pseudomonas strains increased wheat shoot length, root length, fresh biomass, dry biomass, and leaf greenness up to 41.6%, 100%, 79.9%, 81.5%, and 21.1%, respectively, over the uninoculated control. Four of the 11 Pseudomonas consortia tested expressed good weed suppression and wheat growth promotion capacity and deserve further experimentation. The findings from this study may lead to the formulation of bioherbicides that will improve human and environmental health.


Sujet(s)
Avena/microbiologie , Phalaris/microbiologie , Pseudomonas/physiologie , Triticum/croissance et développement , Lutte contre les mauvaises herbes/méthodes , Humains , Plant/microbiologie , Graines/microbiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...