Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Biochem Genet ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38955878

RÉSUMÉ

The advent of the new coronavirus, leading to the SARS-CoV-2 pandemic, has presented a substantial worldwide health hazard since its inception in the latter part of 2019. The severity of the current pandemic is exacerbated by the occurrence of re-infection or co-infection with SARS-CoV-2. Hence, comprehending the molecular process underlying the pathophysiology of sepsis and discerning possible molecular targets for therapeutic intervention holds significant importance. For the first time, 31 metabolites were tentatively identified by GC-MS analysis from Alpinia malaccensis. On the other hand, five phenolic compounds were identified and quantified from the plant in HPLC-DAD analysis, including (-) epicatechin, rutin hydrate, rosmarinic acid, quercetin, and kaempferol. Nine GC-MS and five HPLC-identified metabolites had shown interactions with 45 and 30 COVID-19-associated human proteins, respectively. Among the proteins, PARP1, FN1, PRKCA, EGFR, ALDH2, AKR1C3, AHR, and IKBKB have been found as potential therapeutic targets to mitigate SARS-CoV-2 infection. KEGG pathway analysis also showed a strong association of FN1, EGFR, and IKBKB genes with SARS-CoV-2 viral replication and cytokine overexpression due to viral infection. Protein-protein interaction (PPI) analysis also showed that TP53, MMP9, FN1, EGFR, and NOS2 proteins are highly related to the genes involved in COVID-19 comorbidity. These proteins showed interaction with the plant phytoconstituents as well. As the study offers a robust network-based procedure for identifying biomolecules relevant to COVID-19 disease, A. malaccensis could be a good source of effective therapeutic agents against COVID-19 and related viral diseases.

2.
Front Pharmacol ; 15: 1344123, 2024.
Article de Anglais | MEDLINE | ID: mdl-38420193

RÉSUMÉ

Zingiber roseum (Roxb.) Roscoe, a perennial herb from the Zingiberaceae family, has a long history of traditional use in the treatment of several ailments including pain, inflammation, fever, cough, arthritis, skin diseases, and liver infections. This study sought to confirm the efficacy of Zingiber roseum (Roxb.) Roscoe leaves methanol extract (ZrlME) as reported in traditional usage by evaluating its analgesic, anti-inflammatory, and antipyretic capabilities. In addition, in silico molecular docking of the metabolites identified in ZrlME was studied to verify the experimental outcomes. ZrlME demonstrated strong dose-dependent analgesic efficacy against all analgesic tests. ZrlME (400 mg/kg) showed higher anti-inflammatory activity than the standard in the carrageenan-induced paw edema test model. A significant reduction of rectal temperature (3.97°F↓) was also recorded at the same dose of ZrLME after 24 h of treatment. Seven polyphenolic metabolites were identified and quantified by HPLC-DAD analysis, including 3, 4- dihydroxy benzoic acid, (-) epicatechin, rutin hydrate, p-coumaric acid, trans-ferulic acid, rosmarinic acid, and myricetin. Strong binding affinities (ranges from -5.8 to -8.5 Kcal/mol) between the aforesaid polyphenols and cyclooxygenase-2 were discovered. Moreover, molecular dynamics simulations (MDS) demonstrated that these polyphenols exhibit significant COX-2 inhibitory activity due to their high stability in the COX-2 active site. In computational prediction, the polyphenols were also found to be nontoxic, and a variety of biological activities, such as antioxidant, analgesic, anti-inflammatory, antipyretic, and hepatoprotective, were observed. The results of this study revealed that ZrlME possesses notable analgesic, anti-inflammatory, and antipyretic properties.

3.
Inflammopharmacology ; 30(6): 2301-2315, 2022 Dec.
Article de Anglais | MEDLINE | ID: mdl-36056995

RÉSUMÉ

Cyclooxygenase-2 (COX-2) is an inducible enzyme that accelerates the biosynthesis of PGs during inflammation and has emerged as an important therapeutic target for anti-inflammatory drugs. Natural compounds may serve as a source of inspiration for pharmaceutical chemists and a foundation for developing innovative COX-2 inhibitors with fewer side effects. Therefore, the objective of this study was to identify the potent COX-2 inhibitor and anti-inflammatory activity of the Fimbristylis aestivalis whole plant extract (FAWE). The plant extract was found dominant with rosmarinic acid followed by catechin hydrate, syringic acid, rutin hydrate, (-) epicatechin, quercetin, myricetin, and catechol. FAWE exhibited considerable dose-dependent analgesic efficacy in all analgesic test models. FAWE also showed promising anti-inflammatory potential in carrageenan-induced inflammations in mice. This result was corroborated by molecular docking, revealing that the aforesaid natural polyphenols adopt the same orientation as celecoxib in the COX-2 active site. On the other hand, molecular dynamics (MD) simulations were performed between the most abundant components (rosmarinic acid, catechin hydrate, and syringic acid) and COX-2. Based on hydrogen bonding, RMSD, RMSF, radius of gyration, PCA, and Gibbs free energy landscape analysis, the results demonstrated that these compounds are very stable in the active site of COX-2, indicating substantial COX-2 inhibitory activity.


Sujet(s)
Catéchine , Inhibiteurs de la cyclooxygénase 2 , Souris , Animaux , Inhibiteurs de la cyclooxygénase 2/pharmacologie , Cyclooxygenase 2 , Simulation de docking moléculaire , Catéchine/pharmacologie , Anti-inflammatoires non stéroïdiens/pharmacologie , Analgésiques/pharmacologie , Carragénane , Extraits de plantes/usage thérapeutique , Oedème/induit chimiquement , Oedème/traitement médicamenteux , Cyclooxygenase 1 ,
4.
Biomed Pharmacother ; 148: 112774, 2022 Apr.
Article de Anglais | MEDLINE | ID: mdl-35240529

RÉSUMÉ

Castanopsis tribuloides belongs to the oak species (Fagaceae) and it is commonly distributed in evergreen forests of Bangladesh, India, Myanmar, Nepal, China, and Thailand. Our present study aimed at uncovering the antipyretic potential of methanol extract of C. tribuloides bark (CTB) in the mice models. Baker's yeast pyrexia model was employed to determine the antipyretic potentials of the extract. Besides, molecular docking and dynamics simulation of CTB phenolic compounds were explored to validate the experimental results and gain insight into the possible antipyretic mechanism of action that can lead to the design and discovery of novel drugs against mPGES-1. The results revealed that CTB (400 mg/kg) significantly inhibited (P < 0.001) the elevated body temperature of mice since 0.5 h, which is more prominent than the standard. At dose 200 mg/kg, the bark extract also produced significant (P < 0.05) antipyretic activity since 2 h. HPLC-DAD analysis identified and quantified nine polyphenolic compounds from the extract, including rutin hydrate, (-) epicatechin, caffeic acid, catechin hydrate, catechol, trans-ferulic acid, p-coumaric acid, vanillic acid, and rosmarinic acid. Molecular docking study suggested probable competition of these phenolic compounds with glutathione, an essential cofactor for microsomal prostaglandin E synthase-1 (mPGES-1) activity. Additionally, RMSF, RMSD, Rg, and hydrogen bonds performed during MD simulations revealed that rutin hydrate (rich in CTB) bound to the mPGES-1 active site in a stable manner and thus inactivating mPGES-1. Therefore, it can be concluded that rutin hydrate reduces pyrexia in mice via downregulating PGE2 synthesis by inhibiting mPGES-1 activity.


Sujet(s)
Fagaceae , Fièvre/anatomopathologie , Microsomes/effets des médicaments et des substances chimiques , Extraits de plantes/pharmacologie , Prostaglandin-E synthases/effets des médicaments et des substances chimiques , Rutoside/pharmacologie , Animaux , Femelle , Mâle , Souris , Simulation de docking moléculaire , Écorce , Extraits de plantes/composition chimique , Polyphénols/composition chimique , Polyphénols/pharmacologie , Rutoside/composition chimique
5.
Heliyon ; 8(12): e12368, 2022 Dec.
Article de Anglais | MEDLINE | ID: mdl-36590510

RÉSUMÉ

Crotalaria calycina Schrank is a local Bangladeshi plant well-accepted by the tribal population for its medicinal properties. The primary approach of our study was to uncover the analgesic and anti-inflammatory potential of methanol extract of C. calycina stem in mice model with in silico molecular docking and molecular dynamics simulation approach. Phenolic compounds were identified and quantified from the extract through high-performance liquid chromatography-diode array detector (HPLC-DAD) analysis. Writhing assay through injection of acetic acid, licking assay through formalin injection, and finally, hot plate assay was employed to observe the analgesic activity. The carrageenan-induced paw edema model was employed to determine the anti-inflammatory potential of the extract. In silico molecular docking and molecular dynamics were also run to validate the in vivo study results. Eight polyphenolic compounds from the extract were identified and quantified via HPLC-DAD analysis, and (-) epicatechin was most abundantly distributed (87.15 ± 0.24 mg/100 g dry extract). In vivo study revealed that 400 mg/kg dose significantly inhibited (P < 0.01) the writhing response in the writhing assay and demonstrated the highest percent of inhibition of licking (70.67%) in the late part of the licking test. The same extract dose produced the highest (74.71%) percent of maximal effect (% MPE) in the hot plate assay. It demonstrated the highest percent of edema inhibition (68.00%) in the fourth hour of the paw edema assay. Molecular docking and molecular dynamics simulation of (-) epicatechin, caffeic acid, and kaempferol with cyclooxygenase-2 revealed that they have similar interactions to the standard inhibitor celecoxib. These valuable bioactive compounds may induce significant analgesic and anti-inflammatory properties in MECCS. Therefore, based on the findings of this study, it can be concluded that C. calycina stem can be a prospect in the medicinal field due to its remarkable analgesic and anti-inflammatory effect.

6.
Biomed Pharmacother ; 139: 111673, 2021 Jul.
Article de Anglais | MEDLINE | ID: mdl-33965729

RÉSUMÉ

Zingiber roseum is native to Bangladesh and widely used in folk medicine. This present study was designed to assess the ameliorative potential of Zingiber roseum rhizome extract in carbon tetrachloride (CCl4) induced hepatotoxicity in mice model. Seven phenolic compounds were identified and quantified by HPLC analysis in the plant extract, including quercetin, myricetin, catechin hydrate, trans-ferulic acid, trans-cinnamic acid, (-) epicatechin, and rosmarinic acid. Hepatotoxicity was induced by administrating a single intraperitoneal injection of CCl4 (10 mL/kg) on 7th day of treatment. The results revealed that plant extract at all doses (100, 200 and 400 mg/kg) significantly reduced (p < 0.05) the elevated serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) concentrations, and these effects were comparable to that of standard drug silymarin. Histopathological examination also revealed the evidence of recovery from CCL4 induced cellular damage when pretreated with Z. roseum rhizome extract. The in-vivo hepatoprotective effects were further investigated by the in-silico study of the aforementioned compounds with liver-protective enzymes such as superoxide dismutase (SOD), peroxiredoxin, and catalase. The strong binding affinities (ranging from -7.3359 to -9.111 KCal/mol) between the phenolic compounds (except trans-cinnamic acid) and oxidative stress enzymes inhibit ROS production during metabolism. The compounds were also found non-toxic in computational prediction, and a series of biological activities like antioxidant, anticarcinogen, cardio-protectant, hepato-protectant have been detected.


Sujet(s)
Intoxication au tétrachlorure de carbone/prévention et contrôle , Lésions hépatiques dues aux substances/prévention et contrôle , Polyphénols/composition chimique , Polyphénols/pharmacologie , Rhizome/composition chimique , Zingiberaceae/composition chimique , Animaux , Intoxication au tétrachlorure de carbone/anatomopathologie , Catalase/métabolisme , Lésions hépatiques dues aux substances/enzymologie , Lésions hépatiques dues aux substances/anatomopathologie , Chromatographie en phase liquide à haute performance , Femelle , Foie/enzymologie , Foie/anatomopathologie , Tests de la fonction hépatique , Souris , Simulation de docking moléculaire , Stress oxydatif/effets des médicaments et des substances chimiques , Peroxirédoxines/métabolisme , Extraits de plantes/pharmacologie , Agents protecteurs/pharmacologie , Espèces réactives de l'oxygène , Silymarine/usage thérapeutique , Superoxide dismutase/métabolisme
7.
Biomed Pharmacother ; 132: 110942, 2020 Dec.
Article de Anglais | MEDLINE | ID: mdl-33254438

RÉSUMÉ

BACKGROUND: Aeginetia indica, a perennial herb from the Orobanchaceae family, generally grows as a root parasite and is widely distributed in the forests of South and South-Asian countries. The plant has valuable uses in herbal medicine against various diseases, such as diabetes, liver diseases, and arthritis. AIM OF THE STUDY: The present study was designed to investigate the antidiabetic and hepatoprotective effects of the methanol extract of the whole plant of A. indica in a mouse model followed by the isolation of bioactive compounds and their in-silico studies. METHODS: The hepatoprotective effects were evaluated in a paracetamol-induced hepatotoxicity mouse model. The antidiabetic effects were examined by an oral glucose tolerance test and in an alloxan-induced diabetes mouse model. RESULTS: The plant extract, at a dose of 400 mg/kg, caused a significant reduction (p < 0.001) in liver enzyme concentrations, including alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase, similar to the effects of standard drug silymarin. The plant extract, at 400 mg/kg, also significantly reduced (p < 0.001) the fasting blood glucose concentration by 27.33 % after 3 h, compared with a reduction of 45.31 % in response to glibenclamide. In the alloxan-induced diabetes model mice, significant reductions (p < 0.05) in elevated glucose concentrations were observed on days 10 and 20 in mice treated with plant extract and glibenclamide. Chromatographic analyses and nuclear magnetic resonance (NMR) studies identified the presence of ß-sitosterol, stigmasterol, and oleic acid in the extract. The possible mechanism underlying the antidiabetic effects was revealed by molecular docking analyses examining the binding of ß-sitosterol and stigmasterol with sirtuin 4, an NAD-dependent deacylase enzyme that downregulates leucine-induced and glutamate dehydrogenase-induced insulin secretion. The binding affinities between sirtuin 4 and ß-sitosterol, stigmasterol, and NAD were found to be -8.6 kcal/mol, -7.2 kcal/mol and -9.5 kcal/mol, respectively, indicating the probable competition between NAD and the isolated components for sirtuin 4. CONCLUSION: The present study revealed that A. indica exerted protective effects against alloxan-induced diabetes and paracetamol-induced hepatotoxicity in mice, which supports the findings regarding the use of A. indica during traditional medical practice.


Sujet(s)
Lésions hépatiques dues aux substances/prévention et contrôle , Diabète expérimental/traitement médicamenteux , Hypoglycémiants/usage thérapeutique , Orobanchaceae , Extraits de plantes/usage thérapeutique , Acétaminophène/toxicité , Analgésiques non narcotiques/toxicité , Animaux , Lésions hépatiques dues aux substances/métabolisme , Diabète expérimental/métabolisme , Hypoglycémiants/isolement et purification , Mâle , Souris , Simulation de docking moléculaire/méthodes , Extraits de plantes/isolement et purification
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...