Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Heliyon ; 10(13): e33820, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39040424

RÉSUMÉ

This study presents a novel polymer nanocomposite based on carboxymethyl cellulose and ß-cyclodextrin crosslinked with succinic acid (CMC-SA-ß-CD) containing nickel cobaltite (NCO) nano-reinforcement. Various analytical techniques have been employed to investigate the structural, thermal, and morphological features of the resulting nanocomposite. The CMC-SA-ß-CD/NCO nanocomposite has been utilized as an adsorbent for the removal of bisphenol-A (BPA, R% <40 %), malachite green (MG, R% > 75 %)), and Congo red (CR, no adsorption) from the synthetic wastewater. The study systematically explored the impact of various parameters on the adsorption process, and the interactions between MG and CMC-SA-ß-CD/NCO were discussed. The adsorption data were fitted to different models to elucidate the kinetics and thermodynamics of the adsorption process. An artificial neural network (ANN) analysis was employed to train the experimental dataset for predicting adsorption outcomes. Despite a low BET surface area (0.798 m2 g-1), CMC-SA-ß-CD/NCO was found to exhibit high MG adsorption capacity. CMC-SA-ß-CD/NCO exhibited better MG adsorption performance at pH 5.5, 40 mg L-1 MG dye concentration, 170 min equilibrium time, 20 mg CMC-SA-ß-CD/NCO dose with more than 90 % removal efficiency. Moreover, the thermodynamic studies suggest that the adsorption of MG was exothermic with ΔH° value -9.93 ± 0.76 kJ mol-1. The isotherm studies revealed that the Langmuir model was the best model to describe the adsorption of MG on CMC-SA-ß-CD/NCO indicating monolayer surface coverage with Langmuir adsorption capacity of 182 ± 4 mg g-1. The energy of adsorption (11.4 ± 0.8 kJ mol-1) indicated chemisorption of MG on the composite surface. The kinetics studies revealed that the pseudo-first-order model best described the adsorption kinetics with q e  = 86.7 ± 2.9 mg g-1. A good removal efficiency (>70 %) was retained after five regeneration reuse cycles. The ANN-trained data showed good linearity between predicted and actual data for the adsorption capacity (R-value>0.99), indicating the reliability of the prediction model. The developed nanocomposite, composed predominantly of biodegradable material, is facile to synthesize and exhibited excellent monolayer adsorption of MG providing a new sustainable adsorbent for selective MG removal.

2.
J Environ Health Sci Eng ; 21(2): 403-416, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37869591

RÉSUMÉ

The grafting of biopolymer gum ghatti (GG) over the PNIPAM and PAA was done and loaded with graphene oxide (GO). Aim of this work is carried out combine adsorption of sodium diclofenac (SD) and metformin (MF) by the prepared hydrogels under influence of various parameters. The adsorbent GG-g-P(NIPAM-co-PAA)/GO(3 mg) chosen for adsorption activity as it displayed highest swelling capacity. The effect of amount of both adsorbents GG-g-P(NIPAM-co-PAA and GG-g-P(NIPAM-co-PAA)/GO(3 mg) showed that highest adsorption capacity found at 40 mg of adsorbents for both drugs at conditions: 100 mg/L concentration, 30 °C, 24 h and pH 6 and subsequently became stable. Both the drugs were removed in greater amount at 25 mg/L concentration, 24 h of contact time, 30 °C, 40 mg amount of both adsorbents and pH 6. Effect of time revealed that as time elevated from 2 h to 12 (100 mg/L concentration,, 30 °C, 40 mg amount of both adsorbents and pH 6) led to increase adsorption efficiency and after that increase time did not much impact on adsorption activity. Adsorption activity of hydrogels declined with increase of temperature (100 mg/L concentration, 12 h, 40 mg amount of both adsorbents and pH 6). The acidic conditions favored adsorption of SD while MF adsorbed under the weak acidic(100 mg/L concentration, 30 °C, 12 h, 40 mg amount of both adsorbents). However, basic conditions did not much influence on adsorption of MF but effected on adsorption activity of SD. Adsorption isotherm and kinetic model suggested that adsorption is homogenous and chemical in nature. The maximum adsorption capacity (qm) found to be 289.01 and 154.55 mg/g for SD and MF respectively. Supplementary information: The online version contains supplementary material available at 10.1007/s40201-023-00867-w.

3.
RSC Adv ; 13(32): 21991-22006, 2023 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-37483676

RÉSUMÉ

The present study investigated the use of a nanocomposite, produced by reinforcing nanosize zinc ferrite (ZnFe2O4) in a porous ß-CD based polymeric matrix (ß-CD-E-T/ZnFe2O4), for the removal of Bisphenol A (BPA) from aqueous solutions via adsorption. The thermal stability of the ß-CD-based polymer and ß-CD-E-T/ZnFe2O4 nanocomposite were investigated using simultaneous thermal analysis at four heating rates. Non-isothermal isoconversion methods were employed to study the thermal degradation kinetics of the ß-CD based polymer before and after ZnFe2O4 nano-filling. The results showed that ZnFe2O4 nano-reinforcement increased the activation energy barrier for the thermal degradation of the ß-CD-based polymeric matrix. Adsorption experiments showed that the ß-CD-E-T/ZnFe2O4 nanocomposite exhibited very high BPA adsorption within 5 minutes. Isotherm, kinetics, and thermodynamic investigations revealed that the adsorption of BPA was via multilayer adsorption on a heterogeneous ß-CD-E-T/ZnFe2O4 surface. The thermodynamic studies indicated that BPA adsorption on ß-CD-E-T/ZnFe2O4 was spontaneous and exothermic. Overall, the ß-CD-E-T/ZnFe2O4 nanocomposite showed less thermal degradation and high efficiency for removing BPA from contaminated water, indicating its potential as a promising material for wastewater treatment applications.

4.
RSC Adv ; 13(33): 22875-22885, 2023 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-37520088

RÉSUMÉ

In the present study Gg-cl-poly(NIPA-co-AA) and Gg-cl-poly(NIPA-co-AA)/-o-MWCNT hydrogels were synthesized using free radical polymerization. We looked into whether combining metformin with diclofenac, a nonsteroidal anti-inflammatory drug (NSAID), would be effective in examining complex formation and analysing the types and intensities of complexes that could result from metformin-diclofenac interactions. The interaction of metformin and diclofenac was studied in vitro at various pH levels and body temperatures. The structure and morphology of the produced hydrogel were characterised using FTIR spectra, SEM analysis, and drug loading tests. As a model drug, the hydrogel was loaded with metformin hydrochloride and sodium diclofenac (DS), and the medicines were released pH-dependently. To explore the drug release kinetics and mechanism, the zero order and first order kinetic models, the Korsemeyar-Peppas model, the Higuchi model, and the Hixson-Crowell model have all been employed. Drug release studies revealed notable characteristics in connection to physiologically predicted pH values, with a high release rate at pH = 9.2. At pH = 9.2, however, both metformin and sodium diclofenac exhibited a Fickian mechanism. Combination treatment may reduce the effective dose of a single drug and hinder metabolic rescue mechanisms. More study is needed to detect any negative effects on individuals.

5.
Int J Biol Macromol ; 224: 358-369, 2023 Jan 01.
Article de Anglais | MEDLINE | ID: mdl-36283560

RÉSUMÉ

The aim of this study was to better understand the underlying drug release characteristics from Gg-cl-poly(NIPA-co-AA)/CoFe2O4 hydrogel containing metformin hydrochloride as model drug. Nanocomposite's hydrogel of gum ghatti free radical polymerization is used for the controlled release of metformin hydrogen chloride. Gum ghatti and CoFe2O4 nanoparticle dispersion were grafted by acrylic acid and N-isopropylacrylamide, employing graft copolymerization in the presence of N, N'-methylene-bis-acrylamide (MBA) as cross linker, and ammonium persulfate (APS) as initiator. The synthesized nanocomposites hydrogel was characterized using FTIR, SEM, TGA and DSC. Drugs were all released through diffusion in the hydrated matrix and polymer relaxation, irrespective of the drug solubility. In vitro drug release studies, at different pH values of pH = 4.0, 7.4 and 9.2 was employed. Drug release was influenced by the change of pH. The pH of 7.4 was considered as the optimized pH for maximum drug release. The nanocomposites hydrogel was loaded with metformin hydrochloride drug (100 mg) which is an antidiabetic drug to investigate the release profiles in PBS (pH 7.4). The effects of polymer level and initial drug loading on release depended on drug properties. Different models were studied for release kinetic studies which showed that the zero-order model suggested the best kinetics release studies in PBS (pH- 7.4) and showed sustained release. The kinetics of drug release were discovered to fit the Korsmeyer-Peppas model with n > 1, indicating a specific case II transport mechanism.


Sujet(s)
Acrylamides , Metformine , Nanogels , Libération de médicament , Cinétique , Acrylamides/composition chimique , Hydrogels/composition chimique , Phénomènes magnétiques , Concentration en ions d'hydrogène
6.
ACS Omega ; 7(48): 43784-43792, 2022 Dec 06.
Article de Anglais | MEDLINE | ID: mdl-36506182

RÉSUMÉ

This work reports synthesis and catalytic effect of cobalt copper zinc ferrite (CoCuZnFe2O4) on the thermal decomposition of ammonium nitrate (AN). AN is a crystalline hygroscopic powder widely applicable as an oxidizer in the propellant formulations for high energetic materials but requires improvement in its thermal decomposition characteristics. Nanocatalyst spinel ferrite CoCuZnFe2O4 was prepared using the coprecipitation method and characterized by various physicochemical instrumental techniques like XRD, FE-SEM, UV-vis, Raman, and TG-DSC. Catalytic study of AN in the presence of nano-CoCuZnFe2O4 was investigated using DSC analysis. The Raman and XRD study confirm the formation of ferrite with a crystalline size 9-22 nm. TG suggests that the catalyst was thermally stable up to 400 °C with ∼10% mass loss. The UV-vis study shows that the optical band gap energy of CoCuZnFe2O4 was 2.6 eV, which may help in fast acceleration of electrons during thermolysis of AN, making the thermal decomposition of AN more favorable in the presence of CoCuZnFe2O4. The thermal decomposition investigation suggests that the activation energy of AN thermolysis in the presence of 2 wt % CoCuZnFe2O4 was decreased by ∼37%. It is concluded that CoCuZnFe2O4 can be used as an efficient catalyst for improving AN's thermal characteristics.

7.
RSC Adv ; 12(30): 19101-19107, 2022 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-35865610

RÉSUMÉ

In this study, the syntheses of a BaCuO3 perovskite-structured oxide and rGO were conducted using a sol-gel method and ultrasonication process, respectively. Their physico-chemical characteristics were studied by powder X-ray diffraction (PXRD), Raman spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy analyses. The perovskite type particles were found to present as a cubic crystal system with a crystal size in the range of 10-60 nm. Their catalytic performance was investigated using differential thermal analysis (DTA) measurements at varying heating rates via the thermal decomposition of ammonium perchlorate (AP) and 3-nitro-1,2,4-triazol-5-one (NTO). The kinetics and thermodynamics parameters, such as the average activation energy, pre-exponential factor, entropy, and Gibbs free energy, were also investigated, which showed a decrease in the decomposition peak temperature of AP and NTO in the presence of the catalysts rGO, BaCuO3, and rGO + BaCuO3 compared to pure AP and NTO.

8.
Heliyon ; 6(7): e04537, 2020 Jul.
Article de Anglais | MEDLINE | ID: mdl-32760835

RÉSUMÉ

Emissions from landfills are a significant source of non-methane volatile organic compounds (NMVOCs) in urban environments. NMVOCs play an important role in atmospheric chemistry, and elevated concentrations of some compounds are responsible for air quality deterioration. This study is based on the measurements of a suite of 20 C2-C8 NMVOCs at 21 upwind and downwind sites of the largest landfill in western India. Ethane, ethylene and aromatics were the dominant compounds; the concentrations of BTEX in the downwind regions were up to three times higher than their concentrations at upwind sites. The emission ratios of BTEX and other NMVOCs were different from those for residential, commercial, and industrial sources characterizing the emissions from burning and decomposition of organic material. The slope of ΔToluene/ΔBenzene of 0.64 is about three times higher than that determined at the main road junctions of the city. Ranking by Prop-Equiv, the top NMVOCs were isoprene, cis-2-Butene, m + p-xylenes, propylene, ethylene and trans-2-Butene account for 72-75% of the total Prop-Equiv concentrations. Alkenes played the dominant role in ozone formation, followed by aromatic and alkane groups. In addition to landfill emissions, contributions from traffic-related emissions to ambient concentrations of aromatic VOCs were also significant at some sites. Although the experiment was not designed to characterize the emissions from a specific source, the analysis suggests the substantial contributions from both decomposition and burning of landfill materials. The main difficulty in characterizing VOC emissions from landfills is the spatial and temporal variability of emissions from a large area.

9.
Phys Chem Chem Phys ; 16(10): 4728-39, 2014 Mar 14.
Article de Anglais | MEDLINE | ID: mdl-24469463

RÉSUMÉ

Micelles of the star shaped block polymers "tetronics" were employed for the synthesis of gold (Au) nanoparticles (NPs) under the effect of pH and temperature variation. The presence of the diamine core in the tetronic macromolecule made its micelles highly pH responsive, thereby dramatically altering the physiochemical properties. Likewise, a high degree of hydration made the micelles temperature sensitive. UV-visible studies, transmission electron microscopy (TEM), gel electrophoresis, and structure optimization by energy minimization were applied to understand the physiochemical aspects of tetronic micelles and their further role in the synthesis of Au NPs. Synthesis of Au NPs was triggered by the surface cavities of the micelles and hence the NPs simultaneously adsorbed on the micelle surface. Low pH induced high hydration and temperature responsive well defined vesicular morphologies bearing Au NPs, while high pH produced mainly large and compact compound micelles carrying NPs. Both pH and temperature responsive behaviors of different tetronics significantly influenced the synthesis of Au NPs and thus demonstrated their ability to act as nanoreactors for the materials synthesis under different experimental conditions.

10.
J Chromatogr Sci ; 50(8): 721-6, 2012 Sep.
Article de Anglais | MEDLINE | ID: mdl-22641089

RÉSUMÉ

The objective of the current study was to develop and validate a simple, precise and accurate isocratic stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) assay method for the determination of spironolactone and furosemide in solid pharmaceutical dosage forms. Isocratic RP-HPLC separation was achieved on an SGE 150 × 4.6 mm SS Wakosil II 5C8RS 5-µm column using a mobile phase of acetonitrile-ammonium acetate buffer (50:50, v/v) at a flow rate of 1.0 mL/min. The detection was carried out at 254 nm using a photodiode array detector. The drug was subject to oxidation, hydrolysis, photolysis and heat to apply stress conditions. The method was validated for specificity, linearity, precision, accuracy, robustness and solution stability. The method was found to be linear in the drug concentration range of 40-160 µg/mL with correlation coefficients of 0.9977 and 0.9953 for spironolactone and furosemide, respectively. The precision (relative standard deviation; RSD) among a six-sample preparation was 0.87% and 1.1% for spironolactone and furosemide, respectively. Repeatability and intermediate precision (RSD) among a six-sample preparation were 0.46% and 0.20% for spironolactone and furosemide, respectively. The accuracy (recovery) was between 98.05 and 100.17% and 99.07 and 100.58% for spironolactone and furosemide, respectively. Degradation products produced as a result of stress studies did not interfere with the detection of spironolactone and furosemide; therefore, the assay can be considered to be stability-indicating.


Sujet(s)
Chromatographie en phase liquide à haute performance/méthodes , Furosémide/analyse , Spironolactone/analyse , Stabilité de médicament , Furosémide/composition chimique , Modèles linéaires , Reproductibilité des résultats , Spironolactone/composition chimique , Comprimés/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE