Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 23
Filtrer
1.
Bio Protoc ; 13(9): e4666, 2023 May 05.
Article de Anglais | MEDLINE | ID: mdl-37188109

RÉSUMÉ

Management of neuropathic pain is notoriously difficult; current analgesics, including anti-inflammatory- and opioid-based medications, are generally ineffective and can pose serious side effects. There is a need to uncover non-addictive and safe analgesics to combat neuropathic pain. Here, we describe the setup of a phenotypic screen whereby the expression of an algesic gene,Gch1, is targeted. GCH1 is the rate-limiting enzyme in the de novo synthesis of tetrahydrobiopterin (BH4), a metabolite linked to neuropathic pain in both animal models and in human chronic pain sufferers.Gch1is induced in sensory neurons after nerve injury and its upregulation is responsible for increased BH4 levels. GCH1 protein has proven to be a difficult enzyme to pharmacologically target with small molecule inhibition. Thus, by establishing a platform to monitor and target inducedGch1 expression in individual injured dorsal root ganglion (DRG) neurons in vitro, we can screen for compounds that regulate its expression levels. This approach also allows us to gain valuable biological insights into the pathways and signals regulating GCH1 and BH4 levels upon nerve injury. This protocol is compatible with any transgenic reporter system in which the expression of an algesic gene (or multiple genes) can be monitored fluorescently. Such an approach can be scaled up for high-throughput compound screening and is amenable to transgenic mice as well as human stem cell-derived sensory neurons. Graphical overview.

2.
Sci Transl Med ; 14(660): eabj1531, 2022 08 31.
Article de Anglais | MEDLINE | ID: mdl-36044597

RÉSUMÉ

Increased tetrahydrobiopterin (BH4) generated in injured sensory neurons contributes to increased pain sensitivity and its persistence. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme in the de novo BH4 synthetic pathway, and human single-nucleotide polymorphism studies, together with mouse genetic modeling, have demonstrated that decreased GCH1 leads to both reduced BH4 and pain. However, little is known about the regulation of Gch1 expression upon nerve injury and whether this could be modulated as an analgesic therapeutic intervention. We performed a phenotypic screen using about 1000 bioactive compounds, many of which are target-annotated FDA-approved drugs, for their effect on regulating Gch1 expression in rodent injured dorsal root ganglion neurons. From this approach, we uncovered relevant pathways that regulate Gch1 expression in sensory neurons. We report that EGFR/KRAS signaling triggers increased Gch1 expression and contributes to neuropathic pain; conversely, inhibiting EGFR suppressed GCH1 and BH4 and exerted analgesic effects, suggesting a molecular link between EGFR/KRAS and pain perception. We also show that GCH1/BH4 acts downstream of KRAS to drive lung cancer, identifying a potentially druggable pathway. Our screen shows that pharmacologic modulation of GCH1 expression and BH4 could be used to develop pharmacological treatments to alleviate pain and identified a critical role for EGFR-regulated GCH1/BH4 expression in neuropathic pain and cancer in rodents.


Sujet(s)
Tumeurs du poumon , Névralgie , Analgésiques/pharmacologie , Analgésiques/usage thérapeutique , Animaux , Bioptérines/analogues et dérivés , Récepteurs ErbB/génétique , Récepteurs ErbB/métabolisme , GTP cyclohydrolase I/génétique , GTP cyclohydrolase I/métabolisme , Humains , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/génétique , Souris , Névralgie/traitement médicamenteux , Névralgie/métabolisme , Protéines proto-oncogènes p21(ras)/génétique , Protéines proto-oncogènes p21(ras)/métabolisme
3.
Cell Rep ; 37(13): 110176, 2021 12 28.
Article de Anglais | MEDLINE | ID: mdl-34965416

RÉSUMÉ

Repair of genetic damage is coordinated in the context of chromatin, so cells dynamically modulate accessibility at DNA breaks for the recruitment of DNA damage response (DDR) factors. The identification of chromatin factors with roles in DDR has mostly relied on loss-of-function screens while lacking robust high-throughput systems to study DNA repair. In this study, we have developed two high-throughput systems that allow the study of DNA repair kinetics and the recruitment of factors to double-strand breaks in a 384-well plate format. Using a customized gain-of-function open-reading frame library ("ChromORFeome" library), we identify chromatin factors with putative roles in the DDR. Among these, we find the PHF20 factor is excluded from DNA breaks, affecting DNA repair by competing with 53BP1 recruitment. Adaptable for genetic perturbations, small-molecule screens, and large-scale analysis of DNA repair, these resources can aid our understanding and manipulation of DNA repair.


Sujet(s)
Chromatine/génétique , Altération de l'ADN , Enzymes de réparation de l'ADN/métabolisme , Réparation de l'ADN , Histone/métabolisme , Cadres ouverts de lecture , Protéine-1 liant le suppresseur de tumeur p53/métabolisme , Chromatine/métabolisme , Enzymes de réparation de l'ADN/génétique , Tests de criblage à haut débit , Histone/génétique , Humains , Cinétique , Protéine-1 liant le suppresseur de tumeur p53/génétique
4.
Cell Rep ; 36(10): 109666, 2021 09 07.
Article de Anglais | MEDLINE | ID: mdl-34496254

RÉSUMÉ

Although axonal damage induces rapid changes in gene expression in primary sensory neurons, it remains unclear how this process is initiated. The transcription factor ATF3, one of the earliest genes responding to nerve injury, regulates expression of downstream genes that enable axon regeneration. By exploiting ATF3 reporter systems, we identify topoisomerase inhibitors as ATF3 inducers, including camptothecin. Camptothecin increases ATF3 expression and promotes neurite outgrowth in sensory neurons in vitro and enhances axonal regeneration after sciatic nerve crush in vivo. Given the action of topoisomerases in producing DNA breaks, we determine that they do occur immediately after nerve damage at the ATF3 gene locus in injured sensory neurons and are further increased after camptothecin exposure. Formation of DNA breaks in injured sensory neurons and enhancement of it pharmacologically may contribute to the initiation of those transcriptional changes required for peripheral nerve regeneration.


Sujet(s)
Facteur de transcription ATF-3/métabolisme , Axones/métabolisme , Cassures de l'ADN/effets des médicaments et des substances chimiques , ADN topoisomérases de type I/métabolisme , Lésions des nerfs périphériques/métabolisme , Cellules réceptrices sensorielles/métabolisme , Animaux , ADN topoisomérases de type I/effets des médicaments et des substances chimiques , Expression des gènes/physiologie , Souris de lignée C57BL , Régénération nerveuse/effets des médicaments et des substances chimiques , Régénération nerveuse/physiologie , Excroissance neuronale/physiologie , Nerf ischiatique/métabolisme
5.
PLoS One ; 16(9): e0254113, 2021.
Article de Anglais | MEDLINE | ID: mdl-34473715

RÉSUMÉ

During late embryonic development of the cerebral cortex, the major class of cortical output neurons termed subcerebral projection neurons (SCPN; including the predominant population of corticospinal neurons, CSN) and the class of interhemispheric callosal projection neurons (CPN) initially express overlapping molecular controls that later undergo subtype-specific refinements. Such molecular refinements are largely absent in heterogeneous, maturation-stalled, neocortical-like neurons (termed "cortical" here) spontaneously generated by established embryonic stem cell (ES) and induced pluripotent stem cell (iPSC) differentiation. Building on recently identified central molecular controls over SCPN development, we used a combination of synthetic modified mRNA (modRNA) for Fezf2, the central transcription factor controlling SCPN specification, and small molecule screening to investigate whether distinct chromatin modifiers might complement Fezf2 functions to promote SCPN-specific differentiation by mouse ES (mES)-derived cortical-like neurons. We find that the inhibition of a specific histone deacetylase, Sirtuin 1 (SIRT1), enhances refinement of SCPN subtype molecular identity by both mES-derived cortical-like neurons and primary dissociated E12.5 mouse cortical neurons. In vivo, we identify that SIRT1 is specifically expressed by CPN, but not SCPN, during late embryonic and postnatal differentiation. Together, these data indicate that SIRT1 has neuronal subtype-specific expression in the mouse cortex in vivo, and that its inhibition enhances subtype-specific differentiation of highly clinically relevant SCPN / CSN cortical neurons in vitro.


Sujet(s)
Protéines de liaison à l'ADN/génétique , Cellules souches embryonnaires de souris/cytologie , Néocortex/cytologie , Protéines de tissu nerveux/génétique , Neurones/cytologie , Sirtuine-1/antagonistes et inhibiteurs , Animaux , Différenciation cellulaire , Cellules cultivées , Protéines de liaison à l'ADN/métabolisme , Souris , Souris knockout , Cellules souches embryonnaires de souris/métabolisme , Néocortex/métabolisme , Protéines de tissu nerveux/métabolisme , Neurones/métabolisme , ARN messager/génétique , Facteurs de transcription/métabolisme
6.
BMC Biol ; 18(1): 127, 2020 09 16.
Article de Anglais | MEDLINE | ID: mdl-32938453

RÉSUMÉ

BACKGROUND: Understanding the genetic modifiers of neurodegenerative diseases can provide insight into the mechanisms underlying these disorders. Here, we examine the relationship between the motor neuron disease spinal muscular atrophy (SMA), which is caused by reduced levels of the survival of motor neuron (SMN) protein, and the actin-bundling protein Plastin 3 (PLS3). Increased PLS3 levels suppress symptoms in a subset of SMA patients and ameliorate defects in SMA disease models, but the functional connection between PLS3 and SMN is poorly understood. RESULTS: We provide immunohistochemical and biochemical evidence for large protein complexes localized in vertebrate motor neuron processes that contain PLS3, SMN, and members of the hnRNP F/H family of proteins. Using a Caenorhabditis elegans (C. elegans) SMA model, we determine that overexpression of PLS3 or loss of the C. elegans hnRNP F/H ortholog SYM-2 enhances endocytic function and ameliorates neuromuscular defects caused by decreased SMN-1 levels. Furthermore, either increasing PLS3 or decreasing SYM-2 levels suppresses defects in a C. elegans ALS model. CONCLUSIONS: We propose that hnRNP F/H act in the same protein complex as PLS3 and SMN and that the function of this complex is critical for endocytic pathways, suggesting that hnRNP F/H proteins could be potential targets for therapy development.


Sujet(s)
Protéines de Caenorhabditis elegans/génétique , Caenorhabditis elegans/génétique , Glycoprotéines membranaires/génétique , Protéines des microfilaments/génétique , Amyotrophie spinale/génétique , Protéines de liaison à l'ARN/génétique , Protéine-1 de survie du motoneurone/génétique , Animaux , Animal génétiquement modifié/physiologie , Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Modèles animaux de maladie humaine , Endocytose/génétique , Glycoprotéines membranaires/métabolisme , Protéines des microfilaments/métabolisme , Protéines de liaison à l'ARN/métabolisme , Protéine-1 de survie du motoneurone/métabolisme
8.
Cell Stem Cell ; 27(1): 147-157.e7, 2020 07 02.
Article de Anglais | MEDLINE | ID: mdl-32413331

RÉSUMÉ

Although susceptibility to cardiovascular disease (CVD) is different for every patient, why some patients with type 2 diabetes mellitus (T2DM) develop CVD while others are protected has not yet been clarified. Using T2DM-patient-derived human induced pluripotent stem cells (hiPSCs), we found that in patients protected from CVD, there was significantly elevated expression of an esterase, arylacetamide deacetylase (AADAC), in vascular smooth muscle cells (VSMCs). We overexpressed this esterase in human primary VSMCs and VSMCs differentiated from hiPSCs and observed that the number of lipid droplets was significantly diminished. Further metabolomic analyses revealed a marked reduction in storage lipids and an increase in membrane phospholipids, suggesting changes in the Kennedy pathway of lipid bioassembly. Cell migration and proliferation were also significantly decreased in AADAC-overexpressing VSMCs. Moreover, apolipoprotein E (Apoe)-knockout mice overexpressing VSMC-specific Aadac showed amelioration of atherosclerotic lesions. Our findings suggest that higher AADAC expression in VSMCs protects T2DM patients from CVD.


Sujet(s)
Athérosclérose , Diabète de type 2 , Cellules souches pluripotentes induites , Animaux , Prolifération cellulaire , Cellules cultivées , Humains , Souris , Souris de lignée C57BL , Muscles lisses vasculaires , Myocytes du muscle lisse
9.
eNeuro ; 5(3)2018.
Article de Anglais | MEDLINE | ID: mdl-29971247

RÉSUMÉ

Human neurons expressing mutations associated with neurodegenerative disease are becoming more widely available. Hence, developing assays capable of accurately detecting changes that occur early in the disease process and identifying therapeutics able to slow these changes should become ever more important. Using automated live-cell imaging, we studied human motor neurons in the process of dying following neurotrophic factor withdrawal. We tracked different neuronal features, including cell body size, neurite length, and number of nodes. In particular, measuring the number of nodes in individual neurons proved to be an accurate predictor of relative health. Importantly, intermediate phenotypes were defined and could be used to distinguish between agents that could fully restore neurons and neurites and those only capable of maintaining neuronal cell bodies. Application of live-cell imaging to disease modeling has the potential to uncover new classes of therapeutic molecules that intervene early in disease progression.


Sujet(s)
Traitement d'image par ordinateur/méthodes , Motoneurones/anatomopathologie , Motoneurones/physiologie , Maladies neurodégénératives/anatomopathologie , Maladies neurodégénératives/physiopathologie , Benzazépines/administration et posologie , Mort cellulaire , Cellules cultivées , Cellules souches embryonnaires/effets des médicaments et des substances chimiques , Cellules souches embryonnaires/anatomopathologie , Cellules souches embryonnaires/physiologie , Humains , Indoles/administration et posologie , Motoneurones/effets des médicaments et des substances chimiques , Neurites/anatomopathologie , Neurites/physiologie , Reconnaissance automatique des formes
10.
Cell Rep ; 18(6): 1484-1498, 2017 02 07.
Article de Anglais | MEDLINE | ID: mdl-28178525

RÉSUMÉ

The mechanism underlying selective motor neuron (MN) death remains an essential question in the MN disease field. The MN disease spinal muscular atrophy (SMA) is attributable to reduced levels of the ubiquitous protein SMN. Here, we report that SMN levels are widely variable in MNs within a single genetic background and that this heterogeneity is seen not only in SMA MNs but also in MNs derived from controls and amyotrophic lateral sclerosis (ALS) patients. Furthermore, cells with low SMN are more susceptible to cell death. These findings raise the important clinical implication that some SMN-elevating therapeutics might be effective in MN diseases besides SMA. Supporting this, we found that increasing SMN across all MN populations using an Nedd8-activating enzyme inhibitor promotes survival in both SMA and ALS-derived MNs. Altogether, our work demonstrates that examination of human neurons at the single-cell level can reveal alternative strategies to be explored in the treatment of degenerative diseases.


Sujet(s)
Maladies neuromusculaires/métabolisme , Protéines du complexe SMN/métabolisme , Sclérose latérale amyotrophique/métabolisme , Animaux , Modèles animaux de maladie humaine , Humains , Souris , Motoneurones/métabolisme , Amyotrophie spinale/métabolisme , Analyse sur cellule unique/méthodes , Moelle spinale/métabolisme
11.
Stem Cell Reports ; 6(6): 993-1008, 2016 06 14.
Article de Anglais | MEDLINE | ID: mdl-27304920

RÉSUMÉ

Human pluripotent stem cells (hPSCs) offer a renewable source of cells that can be expanded indefinitely and differentiated into virtually any type of cell in the human body, including neurons. This opens up unprecedented possibilities to study neuronal cell and developmental biology and cellular pathology of the nervous system, provides a platform for the screening of chemical libraries that affect these processes, and offers a potential source of transplantable cells for regenerative approaches to neurological disease. However, defining protocols that permit a large number and high yield of neurons has proved difficult. We present differentiation protocols for the generation of distinct subtypes of neurons in a highly reproducible manner, with minimal experiment-to-experiment variation. These neurons form synapses with neighboring cells, exhibit spontaneous electrical activity, and respond appropriately to depolarization. hPSC-derived neurons exhibit a high degree of maturation and survive in culture for up to 4-5 months, even without astrocyte feeder layers.


Sujet(s)
Techniques de culture cellulaire , Réseau nerveux/cytologie , Neurogenèse/effets des médicaments et des substances chimiques , Neurones/effets des médicaments et des substances chimiques , Cellules souches pluripotentes/effets des médicaments et des substances chimiques , Marqueurs biologiques/métabolisme , Facteur neurotrophique dérivé du cerveau/pharmacologie , Différenciation cellulaire/effets des médicaments et des substances chimiques , Facteur neurotrophique ciliaire/pharmacologie , Facteur neurotrophique dérivé des cellules gliales/pharmacologie , Humains , Protéines associées aux microtubules/génétique , Protéines associées aux microtubules/métabolisme , Réseau nerveux/physiologie , Neurogenèse/génétique , Neurones/classification , Neurones/cytologie , Neurones/métabolisme , Biais de l'observateur , Cellules souches pluripotentes/cytologie , Cellules souches pluripotentes/métabolisme , Protéines de répression/génétique , Protéines de répression/métabolisme , Reproductibilité des résultats , Protéines Smad/antagonistes et inhibiteurs , Protéines Smad/génétique , Protéines Smad/métabolisme , Sphéroïdes de cellules/cytologie , Sphéroïdes de cellules/effets des médicaments et des substances chimiques , Sphéroïdes de cellules/métabolisme , Protéines à domaine boîte-T/génétique , Protéines à domaine boîte-T/métabolisme , Protéines suppresseurs de tumeurs/génétique , Protéines suppresseurs de tumeurs/métabolisme
12.
Elife ; 3: e02809, 2014 Sep 16.
Article de Anglais | MEDLINE | ID: mdl-25233132

RÉSUMÉ

Dysfunction or death of pancreatic ß cells underlies both types of diabetes. This functional decline begins with ß cell stress and de-differentiation. Current drugs for type 2 diabetes (T2D) lower blood glucose levels but they do not directly alleviate ß cell stress nor prevent, let alone reverse, ß cell de-differentiation. We show here that Urocortin 3 (Ucn3), a marker for mature ß cells, is down-regulated in the early stages of T2D in mice and when ß cells are stressed in vitro. Using an insulin expression-coupled lineage tracer, with Ucn3 as a reporter for the mature ß cell state, we screen for factors that reverse ß cell de-differentiation. We find that a small molecule inhibitor of TGFß receptor I (Alk5) protects cells from the loss of key ß cell transcription factors and restores a mature ß cell identity even after exposure to prolonged and severe diabetes.


Sujet(s)
Dédifférenciation cellulaire/effets des médicaments et des substances chimiques , Cellules à insuline/anatomopathologie , Transduction du signal/effets des médicaments et des substances chimiques , Bibliothèques de petites molécules/pharmacologie , Facteur de croissance transformant bêta/métabolisme , Animaux , Marqueurs biologiques/métabolisme , Cytokines/pharmacologie , Diabète de type 2/métabolisme , Diabète de type 2/anatomopathologie , Humains , Insulinorésistance , Souris de lignée C57BL , Protéines de tissu nerveux/métabolisme , Protein-Serine-Threonine Kinases/antagonistes et inhibiteurs , Protein-Serine-Threonine Kinases/métabolisme , Récepteur de type I du facteur de croissance transformant bêta , Récepteurs TGF-bêta/antagonistes et inhibiteurs , Récepteurs TGF-bêta/métabolisme , Stress physiologique/effets des médicaments et des substances chimiques , Facteurs de transcription/métabolisme , Régulation positive/effets des médicaments et des substances chimiques , Urocortines/métabolisme
13.
Proc Natl Acad Sci U S A ; 110(26): E2371-80, 2013 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-23757500

RÉSUMÉ

The clinical severity of the neurodegenerative disorder spinal muscular atrophy (SMA) is dependent on the levels of functional Survival Motor Neuron (SMN) protein. Consequently, current strategies for developing treatments for SMA generally focus on augmenting SMN levels. To identify additional potential therapeutic avenues and achieve a greater understanding of SMN, we applied in vivo, in vitro, and in silico approaches to identify genetic and biochemical interactors of the Drosophila SMN homolog. We identified more than 300 candidate genes that alter an Smn-dependent phenotype in vivo. Integrating the results from our genetic screens, large-scale protein interaction studies, and bioinformatic analysis, we define a unique interactome for SMN that provides a knowledge base for a better understanding of SMA.


Sujet(s)
Protéines de Drosophila/génétique , Gènes d'insecte , Protéines de liaison à l'ARN/génétique , Animaux , Animal génétiquement modifié , Réseaux de régulation génique , Humains , Bases de connaissances , Jonction neuromusculaire/génétique , Phénotype , Interférence par ARN , Spécificité d'espèce , Amyotrophies spinales infantiles/génétique
14.
Cell Stem Cell ; 12(6): 713-26, 2013 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-23602540

RÉSUMÉ

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease, characterized by motor neuron (MN) death, for which there are no truly effective treatments. Here, we describe a new small molecule survival screen carried out using MNs from both wild-type and mutant SOD1 mouse embryonic stem cells. Among the hits we found, kenpaullone had a particularly impressive ability to prolong the healthy survival of both types of MNs that can be attributed to its dual inhibition of GSK-3 and HGK kinases. Furthermore, kenpaullone also strongly improved the survival of human MNs derived from ALS-patient-induced pluripotent stem cells and was more active than either of two compounds, olesoxime and dexpramipexole, that recently failed in ALS clinical trials. Our studies demonstrate the value of a stem cell approach to drug discovery and point to a new paradigm for identification and preclinical testing of future ALS therapeutics.


Sujet(s)
Sclérose latérale amyotrophique/traitement médicamenteux , Cellules souches embryonnaires/cytologie , Glycogen Synthase Kinase 3/antagonistes et inhibiteurs , Cellules souches pluripotentes induites/cytologie , Protéines et peptides de signalisation intracellulaire/antagonistes et inhibiteurs , Motoneurones/cytologie , Motoneurones/effets des médicaments et des substances chimiques , Inhibiteurs de protéines kinases/analyse , Inhibiteurs de protéines kinases/pharmacologie , Protein-Serine-Threonine Kinases/antagonistes et inhibiteurs , Sclérose latérale amyotrophique/enzymologie , Sclérose latérale amyotrophique/anatomopathologie , Animaux , Benzazépines/composition chimique , Benzazépines/pharmacologie , Différenciation cellulaire/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Cholesténones/composition chimique , Cholesténones/pharmacologie , Glycogen Synthase Kinase 3/métabolisme , Humains , Indoles/composition chimique , Indoles/pharmacologie , Protéines et peptides de signalisation intracellulaire/métabolisme , Souris , Souris transgéniques , Motoneurones/enzymologie , Mutation , Inhibiteurs de protéines kinases/composition chimique , Protein-Serine-Threonine Kinases/métabolisme , Relation structure-activité , Superoxide dismutase/génétique , Superoxide dismutase/métabolisme , Superoxide dismutase-1
15.
Chem Biol ; 19(8): 972-82, 2012 Aug 24.
Article de Anglais | MEDLINE | ID: mdl-22921064

RÉSUMÉ

The Hedgehog signaling pathway is linked to a variety of diseases, notably a range of cancers. The first generation of drug screens identified Smoothened (Smo), a membrane protein essential for signaling, as an attractive drug target. Smo localizes to the primary cilium upon pathway activation, and this transition is critical for the response to Hedgehog ligands. In a high content screen directly monitoring Smo distribution in Hedgehog-responsive cells, we identified different glucocorticoids as specific modulators of Smo ciliary accumulation. One class promoted Smo accumulation, conferring cellular hypersensitivity to Hedgehog stimulation. In contrast, a second class inhibited Smo ciliary localization and signaling activity by both wild-type Smo, and mutant forms of Smo, SmoM2, and SmoD473H, that are refractory to previously identified Smo antagonists. These findings point to the potential for developing glucocorticoid-based pharmacological modulation of Smo signaling to treat mutated drug-resistant forms of Smo, an emerging problem in long-term cancer therapy. They also raise a concern about potential crosstalk of glucocorticoid drugs in the Hedgehog pathway, if therapeutic administration exceeds levels associated with on-target transcriptional mechanisms of glucocorticoid action.


Sujet(s)
Glucocorticoïdes/pharmacologie , Protéines Hedgehog/métabolisme , Récepteurs couplés aux protéines G/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Anilides/pharmacologie , Animaux , Cellules COS , Prolifération cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Chlorocebus aethiops , Interactions médicamenteuses , Fluocinolone acétonide/pharmacologie , Glucocorticoïdes/composition chimique , Cellules HEK293 , Humains , Souris , Cellules NIH 3T3 , Récepteurs patched , Pyridines/pharmacologie , Récepteurs de surface cellulaire/génétique , Récepteurs de surface cellulaire/métabolisme , Récepteurs couplés aux protéines G/agonistes , Récepteurs couplés aux protéines G/antagonistes et inhibiteurs , Récepteur Smoothened
16.
ACS Chem Biol ; 7(6): 1040-8, 2012 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-22554036

RÉSUMÉ

Hedgehog (Hh) signaling promotes tumorigenesis. The accumulation of the membrane protein Smoothened (Smo) within the primary cilium (PC) is a key event in Hh signal transduction, and many pharmacological inhibitors identified to date target Smo's actions. Smo ciliary translocation is inhibited by some pathway antagonists, while others promote ciliary accumulation, an outcome that can lead to a hypersensitive state on renewal of Hh signaling. To identify novel inhibitory compounds acting on the critical mechanistic transition of Smo accumulation, we established a high content screen to directly analyze Smo ciliary translocation. Screening thousands of compounds from annotated libraries of approved drugs and other agents, we identified several new classes of compounds that block Sonic hedgehog-driven Smo localization within the PC. Selective analysis was conducted on two classes of Smo antagonists. One of these, DY131, appears to inhibit Smo signaling through a common binding site shared by previously reported Smo agonists and antagonists. Antagonism by this class of compound is competed by high doses of Smo-binding agonists such as SAG and impaired by a mutation that generates a ligand-independent, oncogenic form of Smo (SmoM2). In contrast, a second antagonist of Smo accumulation within the PC, SMANT, was less sensitive to SAG-mediated competition and inhibited SmoM2 at concentrations similar to those that inhibit wild-type Smo. Our observations identify important differences among Hh antagonists and the potential for development of novel therapeutic approaches against mutant forms of Smo that are resistant to current therapeutic strategies.


Sujet(s)
Antinéoplasiques/composition chimique , Antinéoplasiques/pharmacologie , Protéines Hedgehog/antagonistes et inhibiteurs , Récepteurs couplés aux protéines G/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Animaux , Lignée cellulaire , Cils vibratiles/effets des médicaments et des substances chimiques , Cils vibratiles/métabolisme , Protéines Hedgehog/métabolisme , Humains , Souris , Tumeurs/traitement médicamenteux , Tumeurs/métabolisme , Transport des protéines/effets des médicaments et des substances chimiques , Récepteur Smoothened
17.
Nat Chem Biol ; 7(8): 544-52, 2011 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-21685895

RÉSUMÉ

The motor neuron disease spinal muscular atrophy (SMA) results from mutations that lead to low levels of the ubiquitously expressed protein survival of motor neuron (SMN). An ever-increasing collection of data suggests that therapeutics that elevate SMN may be effective in treating SMA. We executed an image-based screen of annotated chemical libraries and discovered several classes of compounds that were able to increase cellular SMN. Among the most important was the RTK-PI3K-AKT-GSK-3 signaling cascade. Chemical inhibitors of glycogen synthase kinase 3 (GSK-3) and short hairpin RNAs (shRNAs) directed against this target elevated SMN levels primarily by stabilizing the protein. It was particularly notable that GSK-3 chemical inhibitors were also effective in motor neurons, not only in elevating SMN levels, but also in blocking the death that was produced when SMN was acutely reduced by an SMN-specific shRNA. Thus, we have established a screen capable of detecting drug-like compounds that correct the main phenotypic change underlying SMA.


Sujet(s)
Découverte de médicament/méthodes , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Amyotrophie spinale/traitement médicamenteux , Protéine-1 de survie du motoneurone/métabolisme , Adulte , Animaux , Benzazépines/pharmacologie , Cellules cultivées , Enfant d'âge préscolaire , Cellules souches embryonnaires , Fibroblastes/effets des médicaments et des substances chimiques , Fibroblastes/métabolisme , Régulation de l'expression des gènes/physiologie , Extinction de l'expression des gènes , Glycogen Synthase Kinase 3/antagonistes et inhibiteurs , Glycogen synthase kinase 3 beta , Humains , Indoles/pharmacologie , Souris , Motoneurones/métabolisme , Amyotrophie spinale/métabolisme , Mutation , Facteur de croissance dérivé des plaquettes/pharmacologie , Facteur de transcription STAT-1 , Bibliothèques de petites molécules , Protéine-1 de survie du motoneurone/génétique , Protéine-2 de survie du motoneurone/génétique , Protéine-2 de survie du motoneurone/métabolisme
18.
Nat Biotechnol ; 29(3): 279-86, 2011 Mar.
Article de Anglais | MEDLINE | ID: mdl-21293464

RÉSUMÉ

Human induced pluripotent stem cells (iPSCs) present exciting opportunities for studying development and for in vitro disease modeling. However, reported variability in the behavior of iPSCs has called their utility into question. We established a test set of 16 iPSC lines from seven individuals of varying age, sex and health status, and extensively characterized the lines with respect to pluripotency and the ability to terminally differentiate. Under standardized procedures in two independent laboratories, 13 of the iPSC lines gave rise to functional motor neurons with a range of efficiencies similar to that of human embryonic stem cells (ESCs). Although three iPSC lines were resistant to neural differentiation, early neuralization rescued their performance. Therefore, all 16 iPSC lines passed a stringent test of differentiation capacity despite variations in karyotype and in the expression of early pluripotency markers and transgenes. This iPSC and ESC test set is a robust resource for those interested in the basic biology of stem cells and their applications.


Sujet(s)
Techniques de culture cellulaire/méthodes , Fibroblastes/cytologie , Cellules souches pluripotentes/cytologie , Peau/cytologie , Ingénierie tissulaire/méthodes , Différenciation cellulaire , Cellules cultivées , Humains
19.
Nat Chem Biol ; 5(4): 258-65, 2009 Apr.
Article de Anglais | MEDLINE | ID: mdl-19287398

RÉSUMÉ

Stepwise differentiation from embryonic stem cells (ESCs) to functional insulin-secreting beta cells will identify key steps in beta-cell development and may yet prove useful for transplantation therapy for diabetics. An essential step in this schema is the generation of pancreatic progenitors--cells that express Pdx1 and produce all the cell types of the pancreas. High-content chemical screening identified a small molecule, (-)-indolactam V, that induces differentiation of a substantial number of Pdx1-expressing cells from human ESCs. The Pdx1-expressing cells express other pancreatic markers and contribute to endocrine, exocrine and duct cells, in vitro and in vivo. Further analyses showed that (-)-indolactam V works specifically at one stage of pancreatic development, inducing pancreatic progenitors from definitive endoderm. This study describes a chemical screening platform to investigate human ESC differentiation and demonstrates the generation of a cell population that is a key milepost on the path to making beta cells.


Sujet(s)
Cancérogènes/pharmacologie , Cellules souches embryonnaires/cytologie , Cellules souches embryonnaires/effets des médicaments et des substances chimiques , Indoles/pharmacologie , Cellules à insuline/cytologie , Lactames/pharmacologie , Animaux , Marqueurs biologiques , Différenciation cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire , Cellules souches embryonnaires/physiologie , Protéines à homéodomaine/métabolisme , Humains , Souris , Transactivateurs/métabolisme
20.
Nature ; 447(7141): 167-77, 2007 May 10.
Article de Anglais | MEDLINE | ID: mdl-17495919

RÉSUMÉ

We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian ('marsupial') species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation.


Sujet(s)
Évolution moléculaire , Génome/génétique , Génomique , Opossum/génétique , Animaux , Composition en bases nucléiques , Séquence conservée/génétique , Éléments transposables d'ADN/génétique , Humains , Polymorphisme de nucléotide simple/génétique , Biosynthèse des protéines , Synténie/génétique , Inactivation du chromosome X/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE