Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nanomaterials (Basel) ; 13(13)2023 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-37446416

RÉSUMÉ

Fungal infections have become a significant public health concern due to their increasing recurrence and harmful effects on plants, animals, and humans. Opportunistic pathogens (among others from the genera Candida and Aspergillus) can be present in indoor air, becoming a risk for people with suppressed immune systems. Engineered nanomaterials are novel alternatives to traditional antifungal therapy. In this work, copper(I) iodide (CuI) and a copper-doped titanium dioxide-copper(I) iodide (TiO2-Cu2+/CuI) composite nanomaterials (NMs)-were synthesized and tested as antifungal agents. The materials were synthesized using sol-gel (TiO2-Cu2+) and co-precipitation (CuI) techniques. The resulting colloids were evaluated as antifungal agents against Candida parapsilosis and Aspergillus niger strains. The NMs were characterized by XRD, HRTEM, AFM, and DLS to evaluate their physicochemical properties. The NMs present a high size dispersion and different geometrical shapes of agglomerates. The antifungal capacity of the NMs by the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) was below 15 µg/mL against Candida parapsilosis and below 600 µg/mL against Aspergillus niger for both NMs. Holotomography microscopy showed that the NMs could penetrate cell membranes causing cell death through its rupture and reactive oxygen species (ROS) production. Cytotoxicity tests showed that NMs could be safe to use at low concentrations. The synthesized nanomaterials could be potential antifungal agents for biomedical or environmental applications.

2.
Part Fibre Toxicol ; 17(1): 16, 2020 05 25.
Article de Anglais | MEDLINE | ID: mdl-32450889

RÉSUMÉ

Toxicity testing and regulation of advanced materials at the nanoscale, i.e. nanosafety, is challenged by the growing number of nanomaterials and their property variants requiring assessment for potential human health impacts. The existing animal-reliant toxicity testing tools are onerous in terms of time and resources and are less and less in line with the international effort to reduce animal experiments. Thus, there is a need for faster, cheaper, sensitive and effective animal alternatives that are supported by mechanistic evidence. More importantly, there is an urgency for developing alternative testing strategies that help justify the strategic prioritization of testing or targeting the most apparent adverse outcomes, selection of specific endpoints and assays and identifying nanomaterials of high concern. The Adverse Outcome Pathway (AOP) framework is a systematic process that uses the available mechanistic information concerning a toxicological response and describes causal or mechanistic linkages between a molecular initiating event, a series of intermediate key events and the adverse outcome. The AOP framework provides pragmatic insights to promote the development of alternative testing strategies. This review will detail a brief overview of the AOP framework and its application to nanotoxicology, tools for developing AOPs and the role of toxicogenomics, and summarize various AOPs of relevance to inhalation toxicity of nanomaterials that are currently under various stages of development. The review also presents a network of AOPs derived from connecting all AOPs, which shows that several adverse outcomes induced by nanomaterials originate from a molecular initiating event that describes the interaction of nanomaterials with lung cells and involve similar intermediate key events. Finally, using the example of an established AOP for lung fibrosis, the review will discuss various in vitro tests available for assessing lung fibrosis and how the information can be used to support a tiered testing strategy for lung fibrosis. The AOPs and AOP network enable deeper understanding of mechanisms involved in inhalation toxicity of nanomaterials and provide a strategy for the development of alternative test methods for hazard and risk assessment of nanomaterials.


Sujet(s)
Voies des issues indésirables , Alternatives à l'expérimentation animale , Nanostructures/toxicité , Plan de recherche , Tests de toxicité/méthodes , Animaux , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...