Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Plant Physiol ; 191(3): 1789-1802, 2023 03 17.
Article de Anglais | MEDLINE | ID: mdl-36652435

RÉSUMÉ

The growth-regulating factor (GRF) family of transcriptional factors are involved in the control of leaf size and senescence, inflorescence and root growth, grain size, and plant regeneration. However, there is limited information about the genes regulated by these transcriptional factors, which are in turn responsible for their functions. Using a meta-analysis approach, we identified genes encoding Arabidopsis (Arabidopsis thaliana) zinc-finger homeodomain (ZF-HD) transcriptional factors, as potential targets of the GRFs. We further showed that GRF3 binds to the promoter of one of the members of the ZF-HD family, HOMEOBOX PROTEIN 33 (HB33), and activates its transcription. Increased levels of HB33 led to different modifications in leaf cell number and size that were dependent on its expression levels. Furthermore, we found that expression of HB33 for an extended period during leaf development increased leaf longevity. To cope with the functional redundancy among ZF-HD family members, we generated a dominant repressor version of HB33, HB33-SRDX. Expression of HB33-SRDX from HB33 regulatory regions was seedling-lethal, revealing the importance of the ZF-HD family in plant development. Misexpression of HB33-SRDX in early leaf development caused a reduction in both cell size and number. Interestingly, the loss-of-function of HB33 in lines carrying a GRF3 allele insensitive to miR396 reverted the delay in leaf senescence characteristic of these plants. Our results revealed functions for ZF-HDs in leaf development and linked them to the GRF pathway.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , microARN , Arabidopsis/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Régulation de l'expression des gènes végétaux , microARN/génétique , microARN/métabolisme , Végétaux génétiquement modifiés/métabolisme , Protéines à homéodomaine/génétique , Protéines à homéodomaine/métabolisme , Feuilles de plante/métabolisme
2.
Plant Physiol ; 185(4): 1798-1812, 2021 04 23.
Article de Anglais | MEDLINE | ID: mdl-33580700

RÉSUMÉ

Members of the GROWTH REGULATING FACTOR (GRF) family of transcription factors play key roles in the promotion of plant growth and development. Many GRFs are post-transcriptionally repressed by microRNA (miRNA) miR396, an evolutionarily conserved small RNA, which restricts their expression to proliferative tissue. We performed a comprehensive analysis of the GRF family in eudicot plants and found that in many species all the GRFs have a miR396-binding site. Yet, we also identified GRFs with mutations in the sequence recognized by miR396, suggesting a partial or complete release of their post-transcriptional repression. Interestingly, Brassicaceae species share a group of GRFs that lack miR396 regulation, including Arabidopsis GRF5 and GRF6. We show that instead of miR396-mediated post-transcriptional regulation, the spatiotemporal control of GRF5 is achieved through evolutionarily conserved promoter sequences, and that AUXIN RESPONSE FACTOR 2 (ARF2) binds to such conserved sequences to repress GRF5 expression. Furthermore, we demonstrate that the unchecked expression of GRF5 in arf2 mutants is responsible for the increased cell number of arf2 leaves. The results describe a switch in the repression mechanisms that control the expression of GRFs and mechanistically link the control of leaf growth by miR396, GRFs, and ARF2 transcription factors.


Sujet(s)
Arabidopsis/croissance et développement , Arabidopsis/génétique , Magnoliopsida/croissance et développement , Magnoliopsida/génétique , microARN , Facteur de croissance végétal/génétique , Facteurs de transcription/génétique , Régulation de l'expression des gènes végétaux , Variation génétique , Génotype , Développement des plantes , Analyse de séquence de protéine
3.
Plant J ; 101(1): 171-187, 2020 01.
Article de Anglais | MEDLINE | ID: mdl-31494998

RÉSUMÉ

The spikelet is the basic unit of the grass inflorescence. In tetraploid (Triticum turgidum) and hexaploid wheat (Triticum aestivum), the spikelet is a short indeterminate branch with two proximal sterile bracts (glumes) followed by a variable number of florets, each including a bract (lemma) with an axillary flower. Varying levels of miR172 and/or its target gene Q (AP2L5) result in gradual transitions of glumes to lemmas, and vice versa. Here, we show that AP2L5 and its related paralog AP2L2 play critical and redundant roles in the specification of axillary floral meristems and lemma identity. AP2L2, also targeted by miR172, displayed similar expression profiles to AP2L5 during spikelet development. Loss-of-function mutants in both homeologs of AP2L2 (henceforth ap2l2) developed normal spikelets, but ap2l2 ap2l5 double mutants generated spikelets with multiple empty bracts before transitioning to florets. The coordinated nature of these changes suggest an early role of these genes in floret development. Moreover, the flowers of ap2l2 ap2l5 mutants showed organ defects in paleas and lodicules, including the homeotic conversion of lodicules into carpels. Mutations in the miR172 target site of AP2L2 were associated with reduced plant height, more compact spikes, promotion of lemma-like characters in glumes and smaller lodicules. Taken together, our results show that the balance in the expression of miR172 and AP2-like genes is crucial for the correct development of spikelets and florets, and that this balance has been altered during the process of wheat and barley (Hordeum vulgare) domestication. The manipulation of this regulatory module provides an opportunity to modify spikelet architecture and improve grain yield.


Sujet(s)
Fleurs/croissance et développement , Fleurs/métabolisme , Méristème/croissance et développement , Méristème/métabolisme , Triticum/croissance et développement , Triticum/métabolisme , Fleurs/génétique , Régulation de l'expression des gènes végétaux/génétique , Régulation de l'expression des gènes végétaux/physiologie , Méristème/génétique , microARN/génétique , microARN/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Triticum/génétique
4.
Sci Rep ; 8(1): 13447, 2018 09 07.
Article de Anglais | MEDLINE | ID: mdl-30194309

RÉSUMÉ

An increase in crop yield is essential to reassure food security to meet the accelerating global demand. Several genetic modifications can increase organ size, which in turn might boost crop yield. Still, only in a few cases their performance has been evaluated under stress conditions. MicroRNA miR396 repress the expression of GROWTH-REGULATING FACTOR (GRF) genes that codes for transcription factors that promote organ growth. Here, we show that both Arabidopsis thaliana At-GRF2 and At-GRF3 genes resistant to miR396 activity (rGRF2 and rGRF3) increased organ size, but only rGRF3 can produce this effect without causing morphological defects. Furthermore, introduction of At-rGRF3 in Brassica oleracea can increase organ size, and when At-rGRF3 homologs from soybean and rice are introduced in Arabidopsis, leaf size is also increased. This suggests that regulation of GRF3 activity by miR396 is important for organ growth in a broad range of species. Plants harboring rGRF3 have larger leaves also under drought stress, a condition that stimulates miR396 accumulation. These plants also showed an increase in the resistance to virulent bacteria, suggesting that the size increment promoted by rGRF3 occurs without an obvious cost on plant defenses. Our findings indicate that rGRF3 can increase plant organ size under both normal and stress conditions and is a valuable tool for biotechnological applications.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/croissance et développement , Feuilles de plante/croissance et développement , Facteurs de transcription/métabolisme , Arabidopsis/génétique , Protéines d'Arabidopsis/génétique , Brassica/génétique , Brassica/croissance et développement , microARN/génétique , microARN/métabolisme , Taille d'organe/génétique , Oryza/génétique , Oryza/croissance et développement , Feuilles de plante/génétique , ARN des plantes/génétique , ARN des plantes/métabolisme , Glycine max/génétique , Glycine max/croissance et développement , Facteurs de transcription/génétique
5.
Plant Cell ; 30(2): 347-359, 2018 02.
Article de Anglais | MEDLINE | ID: mdl-29352064

RÉSUMÉ

In the root meristem, the quiescent center (QC) is surrounded by stem cells, which in turn generate the different cell types of the root. QC cells rarely divide under normal conditions but can replenish damaged stem cells. In the proximal meristem, the daughters of stem cells, which are referred to as transit-amplifying cells, undergo additional rounds of cell division prior to differentiation. Here, we describe the functions of GRF-INTERACTING FACTORs (GIFs), including ANGUSTIFOLIA3 (AN3), in Arabidopsis thaliana roots. GIFs have been shown to interact with GRF transcription factors and SWI/SNF chromatin remodeling complexes. We found that combinations of GIF mutants cause the loss of QC identity. However, despite their QC impairment, GIF mutants have a significantly enlarged root meristem with additional lateral root cap layers. We show that the increased expression of PLETHORA1 (PLT1) is at least partially responsible for the large root meristems of an3 mutants. Furthermore, we found that GIFs are necessary for maintaining the precise expression patterns of key developmental regulators and that AN3 complexes bind directly to the promoter regions of PLT1 as well as SCARECROW We propose that AN3/GIFs participate in different pathways that control QC organization and the size of the meristem.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/physiologie , Protéines d'Arabidopsis/génétique , Différenciation cellulaire/génétique , Division cellulaire/génétique , Assemblage et désassemblage de la chromatine/génétique , Homéostasie/génétique , Méristème/génétique , Méristème/croissance et développement , Méristème/physiologie , Mutation , Racines de plante/génétique , Racines de plante/croissance et développement , Racines de plante/physiologie , Transactivateurs/génétique , Transactivateurs/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
6.
Development ; 144(11): 1966-1975, 2017 06 01.
Article de Anglais | MEDLINE | ID: mdl-28455375

RÉSUMÉ

Wheat domestication from wild species involved mutations in the Q gene. The q allele (wild wheats) is associated with elongated spikes and hulled grains, whereas the mutant Q allele (domesticated wheats) confers subcompact spikes and free-threshing grains. Previous studies showed that Q encodes an AP2-like transcription factor, but the causal polymorphism of the domestication traits remained unclear. Here, we show that the interaction between microRNA172 (miR172) and the Q allele is reduced by a single nucleotide polymorphism in the miRNA binding site. Inhibition of miR172 activity by a miRNA target mimic resulted in compact spikes and transition from glumes to florets in apical spikelets. By contrast, overexpression of miR172 was sufficient to induce elongated spikes and non-free-threshing grains, similar to those observed in three Q loss-of-function mutations. These lines showed transitions from florets to glumes in the basal spikelets. These localized homeotic changes were associated with opposing miR172/Q gradients along the spike. We propose that the selection of a nucleotide change at the miR172 binding site of Q contributed to subcompact spikes and free-threshing grains during wheat domestication.


Sujet(s)
microARN/métabolisme , Morphogenèse/génétique , Graines/génétique , Triticum/anatomie et histologie , Triticum/génétique , Allèles , Séquence nucléotidique , Régulation négative/génétique , Régulation de l'expression des gènes au cours du développement , Régulation de l'expression des gènes végétaux , microARN/génétique , Mutation/génétique , ARN messager/génétique , ARN messager/métabolisme , Graines/croissance et développement , Triticum/croissance et développement
7.
BMC Plant Biol ; 16(1): 141, 2016 06 21.
Article de Anglais | MEDLINE | ID: mdl-27329140

RÉSUMÉ

BACKGROUND: In cereal crops such as wheat, an optimal timing of developmental transitions is required to maximize grain yield. Many of these developmental changes are precisely regulated by changes in the duration, intensity or quality of light. Phytochromes are dimeric photoreceptors that absorb light maximally in the red and far-red wavelengths and induce large-scale transcriptional changes in response to variation in light quality. In wheat, PHYC is required for early flowering under long days. However, it is currently unknown whether this function requires the presence of PHYB. In this study, we characterized the role of PHYB in wheat development and used RNA-seq to analyze and compare the transcriptomes of phyB-null and phyC-null TILLING mutants. RESULTS: Under long-day photoperiods, phyB-null plants exhibit a severe delay in flowering comparable to the delay observed in phyC-null plants. These results demonstrate that both genes are required for the induction of wheat flowering under long days. Using replicated RNA-seq studies we identified 82 genes that are significantly up or down regulated in both the phyB-null and phyC-null mutant relative to their respective wild-type controls. Among these genes are several well-characterized positive regulators of flowering, including PPD1, FT1 and VRN1. Eight-fold more genes were differentially regulated only in the phyB-null mutant (2202) than only in the phyC-null mutant (261). The PHYB-regulated genes were enriched in components of the auxin, gibberellin and brassinosteroid biosynthesis and signaling pathways, and in transcription factors with putative roles in regulating vegetative development and shade-avoidance responses. Several genes involved in abiotic stress tolerance pathways were also found to be regulated by PHYB. CONCLUSIONS: PHYB and PHYC are both required for the photoperiodic induction of wheat flowering, whereas PHYB alone regulates a large number of genes involved in hormone biosynthesis and signaling, shade-avoidance response, and abiotic stress tolerance. Our analysis provides a comprehensive overview of the PHYB- and PHYC-mediated transcriptional changes during light signaling, and an initial step towards the dissection of this regulatory gene network in wheat. This further dissection will be required to explore the individual phytochrome-mediated developmental responses and to evaluate their potential to improve wheat adaptation to changing environments.


Sujet(s)
Fleurs/métabolisme , Phytochrome B/métabolisme , Phytochrome/métabolisme , Protéines végétales/métabolisme , Triticum/métabolisme , Fleurs/génétique , Protéines végétales/génétique , ARN des plantes/génétique , Transduction du signal/génétique , Transduction du signal/physiologie , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Triticum/génétique
8.
Plant Signal Behav ; 11(6): e1184809, 2016 06 02.
Article de Anglais | MEDLINE | ID: mdl-27172373

RÉSUMÉ

The combinatory effects of cell proliferation and cell elongation determines the rate at which organs growth. In the root meristematic zone cells both divide and expand, while post-mitotic cells in the elongation zone only expands until they reach their final size. The transcription factors of the GROWTH-REGULATING FACTOR (GRF) class promote cell proliferation in various plant organs. Their expression is restricted to cells with a high proliferative capacity, yet strong downregulation of the GRF activity compromise the plant survival. Part of expression pattern of the GRFs is ensured by the post-transcriptional repression mediated by the conserved microRNA miR396. Here we show the quantitative effects in root growth caused by GRF depletion in a series of transgenic lines with different miR396 levels. We show that high miRNA levels affect cell elongation and proliferation in roots. Detailed analysis suggests that cell proliferation is restricted due to a reduction in cell cycle speed that might result from defects in the accumulation of mitotic cyclins. The results provide insights into the participation of the miRNA-GRF regulatory network in root development.


Sujet(s)
Arabidopsis/cytologie , Arabidopsis/génétique , microARN/métabolisme , Arabidopsis/croissance et développement , Prolifération cellulaire , Régulation de l'expression des gènes végétaux , Protéines à fluorescence verte/métabolisme , Méristème/cytologie , Méristème/métabolisme , microARN/génétique , Mitose/génétique , Végétaux génétiquement modifiés
9.
Plant Cell ; 27(12): 3354-66, 2015 Dec.
Article de Anglais | MEDLINE | ID: mdl-26645252

RÉSUMÉ

To ensure an adequate organ mass, the daughters of stem cells progress through a transit-amplifying phase displaying rapid cell division cycles before differentiating. Here, we show that Arabidopsis thaliana microRNA miR396 regulates the transition of root stem cells into transit-amplifying cells by interacting with GROWTH-REGULATING FACTORs (GRFs). The GRFs are expressed in transit-amplifying cells but are excluded from the stem cells through inhibition by miR396. Inactivation of the GRFs increases the meristem size and induces periclinal formative divisions in transit-amplifying cells. The GRFs repress PLETHORA (PLT) genes, regulating their spatial expression gradient. Conversely, PLT activates MIR396 in the stem cells to repress the GRFs. We identified a pathway regulated by GRF transcription factors that represses stem cell-promoting genes in actively proliferating cells, which is essential for the progression of the cell cycle and the orientation of the cell division plane. If unchecked, the expression of the GRFs in the stem cell niche suppresses formative cell divisions and distorts the organization of the quiescent center. We propose that the interactions identified here between miR396 and GRF and PLT transcription factors are necessary to establish the boundary between the stem cell niche and the transit-amplifying region.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/génétique , Régulation de l'expression des gènes végétaux , microARN/génétique , Arabidopsis/cytologie , Arabidopsis/croissance et développement , Protéines d'Arabidopsis/génétique , Division cellulaire , Méristème/cytologie , Méristème/génétique , Méristème/croissance et développement , Racines de plante/cytologie , Racines de plante/génétique , Racines de plante/croissance et développement , Végétaux génétiquement modifiés , Niche de cellules souches/génétique , Cellules souches , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
10.
Plant J ; 74(6): 920-34, 2013 Jun.
Article de Anglais | MEDLINE | ID: mdl-23566016

RÉSUMÉ

The root system is crucial for acquisition of resources from the soil. In legumes, the efficiency of mineral and water uptake by the roots may be reinforced due to establishment of symbiotic relationships with mycorrhizal fungi and interactions with soil rhizobia. Here, we investigated the role of miR396 in regulating the architecture of the root system and in symbiotic interactions in the model legume Medicago truncatula. Analyses with promoter-GUS fusions suggested that the mtr-miR396a and miR396b genes are highly expressed in root tips, preferentially in the transition zone, and display distinct expression profiles during lateral root and nodule development. Transgenic roots of composite plants that over-express the miR396b precursor showed lower expression of six growth-regulating factor genes (MtGRF) and two bHLH79-like target genes, as well as reduced growth and mycorrhizal associations. miR396 inactivation by mimicry caused contrasting tendencies, with increased target expression, higher root biomass and more efficient colonization by arbuscular mycorrhizal fungi. In contrast to MtbHLH79, repression of three GRF targets by RNA interference severely impaired root growth. Early activation of mtr-miR396b, concomitant with post-transcriptional repression of MtGRF5 expression, was also observed in response to exogenous brassinosteroids. Growth limitation in miR396 over-expressing roots correlated with a reduction in cell-cycle gene expression and the number of dividing cells in the root apical meristem. These results link the miR396 network to the regulation of root growth and mycorrhizal associations in plants.


Sujet(s)
Régulation de l'expression des gènes végétaux , Medicago truncatula/physiologie , microARN/génétique , Mycorhizes/physiologie , Protéines végétales/métabolisme , Biomasse , Prolifération cellulaire , Biologie informatique , Champignons/physiologie , Expression des gènes , Gènes rapporteurs , Medicago truncatula/cytologie , Medicago truncatula/génétique , Medicago truncatula/croissance et développement , Méristème/cytologie , Méristème/génétique , Méristème/croissance et développement , Méristème/physiologie , Mycorhizes/cytologie , Mycorhizes/génétique , Mycorhizes/croissance et développement , Protéines végétales/génétique , Nodulation racinaire , Racines de plante/cytologie , Racines de plante/génétique , Racines de plante/croissance et développement , Racines de plante/physiologie , Végétaux génétiquement modifiés , Régions promotrices (génétique)/génétique , Interférence par ARN , Alignement de séquences , Sinorhizobium meliloti/physiologie , Symbiose , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE