Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 17 de 17
Filtrer
1.
Nature ; 631(8019): 164-169, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38926580

RÉSUMÉ

Plants adapt to fluctuating environmental conditions by adjusting their metabolism and gene expression to maintain fitness1. In legumes, nitrogen homeostasis is maintained by balancing nitrogen acquired from soil resources with nitrogen fixation by symbiotic bacteria in root nodules2-8. Here we show that zinc, an essential plant micronutrient, acts as an intracellular second messenger that connects environmental changes to transcription factor control of metabolic activity in root nodules. We identify a transcriptional regulator, FIXATION UNDER NITRATE (FUN), which acts as a sensor, with zinc controlling the transition between an inactive filamentous megastructure and an active transcriptional regulator. Lower zinc concentrations in the nodule, which we show occur in response to higher levels of soil nitrate, dissociates the filament and activates FUN. FUN then directly targets multiple pathways to initiate breakdown of the nodule. The zinc-dependent filamentation mechanism thus establishes a concentration readout to adapt nodule function to the environmental nitrogen conditions. In a wider perspective, these results have implications for understanding the roles of metal ions in integration of environmental signals with plant development and optimizing delivery of fixed nitrogen in legume crops.


Sujet(s)
Régulation de l'expression des gènes végétaux , Nitrates , Fixation de l'azote , Nodules racinaires de plante , Facteurs de transcription , Zinc , Zinc/métabolisme , Facteurs de transcription/métabolisme , Nitrates/métabolisme , Nodules racinaires de plante/métabolisme , Azote/métabolisme , Medicago truncatula/métabolisme , Medicago truncatula/génétique , Symbiose , Protéines végétales/métabolisme , Protéines végétales/génétique
2.
Proc Natl Acad Sci U S A ; 121(15): e2315575121, 2024 Apr 09.
Article de Anglais | MEDLINE | ID: mdl-38568972

RÉSUMÉ

The membrane protein Niemann-Pick type C1 (NPC1, named NCR1 in yeast) is central to sterol homeostasis in eukaryotes. Saccharomyces cerevisiae NCR1 is localized to the vacuolar membrane, where it is suggested to carry sterols across the protective glycocalyx and deposit them into the vacuolar membrane. However, documentation of a vacuolar glycocalyx in fungi is lacking, and the mechanism for sterol translocation has remained unclear. Here, we provide evidence supporting the presence of a glycocalyx in isolated S. cerevisiae vacuoles and report four cryo-EM structures of NCR1 in two distinct conformations, named tense and relaxed. These two conformations illustrate the movement of sterols through a tunnel formed by the luminal domains, thus bypassing the barrier presented by the glycocalyx. Based on these structures and on comparison with other members of the Resistance-Nodulation-Division (RND) superfamily, we propose a transport model that links changes in the luminal domains with a cycle of protonation and deprotonation within the transmembrane region of the protein. Our model suggests that NPC proteins work by a generalized RND mechanism where the proton motive force drives conformational changes in the transmembrane domains that are allosterically coupled to luminal/extracellular domains to promote sterol transport.


Sujet(s)
Saccharomyces cerevisiae , Stérols , Stérols/métabolisme , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de transport/métabolisme , Récepteur-1 de déclenchement de cytotoxicité naturelle/métabolisme , Protéine NPC1/métabolisme , Glycoprotéines membranaires/métabolisme
3.
Nat Commun ; 14(1): 6429, 2023 10 13.
Article de Anglais | MEDLINE | ID: mdl-37833274

RÉSUMÉ

RNA-binding proteins (RBPs) are crucial regulators of gene expression, often composed of defined domains interspersed with flexible, intrinsically disordered regions. Determining the structure of ribonucleoprotein (RNP) complexes involving such RBPs necessitates integrative structural modeling due to their lack of a single stable state. In this study, we integrate magnetic resonance, mass spectrometry, and small-angle scattering data to determine the solution structure of the polypyrimidine-tract binding protein 1 (PTBP1/hnRNP I) bound to an RNA fragment from the internal ribosome entry site (IRES) of the encephalomyocarditis virus (EMCV). This binding, essential for enhancing the translation of viral RNA, leads to a complex structure that demonstrates RNA and protein compaction, while maintaining pronounced conformational flexibility. Acting as an RNA chaperone, PTBP1 orchestrates the IRES RNA into a few distinct conformations, exposing the RNA stems outward. This conformational diversity is likely common among RNP structures and functionally important. Our approach enables atomic-level characterization of heterogeneous RNP structures.


Sujet(s)
Sites internes d'entrée des ribosomes , Protéines de liaison à l'ARN , Protéines de liaison à l'ARN/métabolisme , Virus de l'encéphalomyocardite/génétique , ARN viral/métabolisme , Conformation d'acide nucléique , Biosynthèse des protéines
4.
Nucleic Acids Res ; 50(11): 6300-6312, 2022 06 24.
Article de Anglais | MEDLINE | ID: mdl-35687109

RÉSUMÉ

Heterogenous nuclear ribonucleoproteins (hnRNPs) are abundant proteins implicated in various steps of RNA processing that assemble on nuclear RNA into larger complexes termed 40S hnRNP particles. Despite their initial discovery 55 years ago, our understanding of these intriguing macromolecular assemblies remains limited. Here, we report the biochemical purification of native 40S hnRNP particles and the determination of their complete protein composition by label-free quantitative mass spectrometry, identifying A-group and C-group hnRNPs as the major protein constituents. Isolated 40S hnRNP particles dissociate upon RNA digestion and can be reconstituted in vitro on defined RNAs in the presence of the individual protein components, demonstrating a scaffolding role for RNA in nucleating particle formation. Finally, we revealed their nanometer scale, condensate-like nature, promoted by intrinsically disordered regions of A-group hnRNPs. Collectively, we identify nuclear 40S hnRNP particles as novel dynamic biomolecular condensates.


Sujet(s)
Condensats biomoléculaires , Ribonucléoprotéines nucléaires hétérogènes , Noyau de la cellule/métabolisme , Ribonucléoprotéines nucléaires hétérogènes/génétique , Ribonucléoprotéines nucléaires hétérogènes/métabolisme , ARN/métabolisme
5.
Nature ; 609(7927): 605-610, 2022 09.
Article de Anglais | MEDLINE | ID: mdl-35768502

RÉSUMÉ

Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants1-3. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space4-9. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood. Here we present biophysical analysis together with three structures of Arabidopsis thaliana PIN8: two outward-facing conformations with and without auxin, and one inward-facing conformation bound to the herbicide naphthylphthalamic acid. The structure forms a homodimer, with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline-proline crossover is a pivot point for structural changes associated with transport, which we show to be independent of proton and ion gradients and probably driven by the negative charge of the auxin. The structures and biochemical data reveal an elevator-type transport mechanism reminiscent of bile acid/sodium symporters, bicarbonate/sodium symporters and sodium/proton antiporters. Our results provide a comprehensive molecular model for auxin recognition and transport by PINs, link and expand on a well-known conceptual framework for transport, and explain a central mechanism of polar auxin transport, a core feature of plant physiology, growth and development.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Acides indolacétiques , Protéines de transport membranaire , Antiports/métabolisme , Arabidopsis/composition chimique , Arabidopsis/métabolisme , Protéines d'Arabidopsis/composition chimique , Protéines d'Arabidopsis/métabolisme , Hydrogénocarbonates/métabolisme , Acides et sels biliaires/métabolisme , Sites de fixation , Transport biologique , Herbicides/métabolisme , Acides indolacétiques/composition chimique , Acides indolacétiques/métabolisme , Protéines de transport membranaire/composition chimique , Protéines de transport membranaire/métabolisme , Phtalimides/métabolisme , Facteur de croissance végétal/composition chimique , Facteur de croissance végétal/métabolisme , Proline/métabolisme , Domaines protéiques , Multimérisation de protéines , Protons , Sodium/métabolisme , Symporteurs/métabolisme
6.
FEBS Lett ; 596(2): 160-179, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-34897668

RÉSUMÉ

Sterols are an essential component of membranes in all eukaryotic cells and the precursor of multiple indispensable cellular metabolites. After endocytotic uptake, sterols are integrated into the lysosomal membrane by the Niemann-Pick type C (NPC) system before redistribution to other membranes. The process is driven by two proteins that, together, compose the NPC system: the lysosomal sterol shuttle protein NPC2 and the membrane protein NPC1 (named NCR1 in fungi), which integrates sterols into the lysosomal membrane. The Saccharomyces cerevisiae NPC system provides a compelling model to study the molecular mechanism of sterol integration into membranes and sterol homeostasis. This review summarizes recent advances in the field, and by interpreting available structural data, we propose a unifying conceptual model for sterol loading, transfer and transport by NPC proteins.


Sujet(s)
Saccharomyces cerevisiae
7.
Nucleic Acids Res ; 49(11): e63, 2021 06 21.
Article de Anglais | MEDLINE | ID: mdl-33677607

RÉSUMÉ

U1 small nuclear ribonucleoparticle (U1 snRNP) plays a central role during RNA processing. Previous structures of U1 snRNP revealed how the ribonucleoparticle is organized and recognizes the pre-mRNA substrate at the exon-intron junction. As with many other ribonucleoparticles involved in RNA metabolism, U1 snRNP contains extensions made of low complexity sequences. Here, we developed a protocol to reconstitute U1 snRNP in vitro using mostly full-length components in order to perform liquid-state NMR spectroscopy. The accuracy of the reconstitution was validated by probing the shape and structure of the particle by SANS and cryo-EM. Using an NMR spectroscopy-based approach, we probed, for the first time, the U1 snRNP tails at atomic detail and our results confirm their high degree of flexibility. We also monitored the labile interaction between the splicing factor PTBP1 and U1 snRNP and validated the U1 snRNA stem loop 4 as a binding site for the splicing regulator on the ribonucleoparticle. Altogether, we developed a method to probe the intrinsically disordered regions of U1 snRNP and map the interactions controlling splicing regulation. This approach could be used to get insights into the molecular mechanisms of alternative splicing and screen for potential RNA therapeutics.


Sujet(s)
Petites ribonucléoprotéines nucléaires U1/composition chimique , Sites de fixation , Ligands , Spectroscopie par résonance magnétique , Facteurs d'épissage des ARN/métabolisme , Petites ribonucléoprotéines nucléaires U1/métabolisme
9.
J Biol Chem ; 291(25): 13286-300, 2016 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-27076635

RÉSUMÉ

Filamentation induced by cAMP (Fic) domain proteins have been shown to catalyze the transfer of the AMP moiety from ATP onto a protein target. This type of post-translational modification was recently shown to play a crucial role in pathogenicity mediated by two bacterial virulence factors. Herein we characterize a novel Fic domain protein that we identified from the human pathogen Clostridium difficile The crystal structure shows that the protein adopts a classical all-helical Fic fold, which belongs to class II of Fic domain proteins characterized by an intrinsic N-terminal autoinhibitory α-helix. A conserved glutamate residue in the inhibitory helix motif was previously shown in other Fic domain proteins to prevent proper binding of the ATP γ-phosphate. However, here we demonstrate that both ATP binding and autoadenylylation activity of the C. difficile Fic domain protein are independent of the inhibitory motif. In support of this, the crystal structure of a mutant of this Fic protein in complex with ATP reveals that the γ-phosphate adopts a conformation unique among Fic domains that seems to override the effect of the inhibitory helix. These results provide important structural insight into the adenylylation reaction mechanism catalyzed by Fic domains. Our findings reveal the presence of a class II Fic domain protein in the human pathogen C. difficile that is not regulated by autoinhibition and challenge the current dogma that all class I-III Fic domain proteins are inhibited by the inhibitory α-helix.


Sujet(s)
Protéines bactériennes/métabolisme , Clostridioides difficile/métabolisme , AMP cyclique/métabolisme , Adénosine triphosphate/métabolisme , Séquence d'acides aminés , Protéines bactériennes/composition chimique , Clostridioides difficile/composition chimique , Cristallographie aux rayons X , Entérocolite pseudomembraneuse/microbiologie , Humains , Modèles moléculaires , Conformation des protéines , Multimérisation de protéines , Structure tertiaire des protéines
10.
Proteins ; 84(7): 892-9, 2016 07.
Article de Anglais | MEDLINE | ID: mdl-26833558

RÉSUMÉ

The VapC toxin from the Shigella flexneri 2a virulence plasmid pMYSH6000 belongs to the PIN domain protein family, which is characterized by a conserved fold with low amino acid sequence conservation. The toxin is a bona fide Mg(2+) -dependent ribonuclease and has been shown to target initiator tRNA(fMet) in vivo. Here, we present crystal structures of active site catalytic triad mutants D7A, D7N, and D98N of the VapC toxin in absence of antitoxin. In all structures, as well as in solution, VapC forms a dimer. In the D98N structure, a Hepes molecule occupies both active sites of the dimer and comparison with the structure of RNase H bound to a DNA/RNA hybrid suggests that the Hepes molecule mimics the position of an RNA nucleotide in the VapC active site. Proteins 2016; 84:892-899. © 2016 Wiley Periodicals, Inc.


Sujet(s)
Protéines bactériennes/composition chimique , Toxines bactériennes/composition chimique , Ribonucléases/composition chimique , Shigella flexneri/composition chimique , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Toxines bactériennes/génétique , Toxines bactériennes/métabolisme , Domaine catalytique , Cristallographie aux rayons X , Dysenterie bacillaire/microbiologie , Humains , Magnésium/métabolisme , Modèles moléculaires , Mutation , Plasmides/composition chimique , Plasmides/génétique , Plasmides/métabolisme , Liaison aux protéines , Conformation des protéines , Multimérisation de protéines , Ribonucléases/génétique , Ribonucléases/métabolisme , Shigella flexneri/génétique , Shigella flexneri/métabolisme , Spécificité du substrat
11.
J Biol Chem ; 291(11): 5803-5816, 2016 Mar 11.
Article de Anglais | MEDLINE | ID: mdl-26786100

RÉSUMÉ

Attaching and effacing Escherichia coli cause diarrhea and typically produce lymphostatin (LifA), an inhibitor of mitogen-activated proliferation of lymphocytes and pro-inflammatory cytokine synthesis. A near-identical factor (Efa1) has been reported to mediate adherence of E. coli to epithelial cells. An amino-terminal region of LifA shares homology with the catalytic domain of the large clostridial toxins, which are retaining glycosyltransferases with a DXD motif involved in binding of a metal ion. Understanding the mode(s) of action of lymphostatin has been constrained by difficulties obtaining a stably transformed plasmid expression clone. We constructed a tightly inducible clone of enteropathogenic E. coli O127:H6 lifA for affinity purification of lymphostatin. The purified protein inhibited mitogen-activated proliferation of bovine T lymphocytes in the femtomolar range. It is a monomer in solution and the molecular envelope was determined using both transmission electron microscopy and small-angle x-ray scattering. Domain architecture was further studied by limited proteolysis. The largest proteolytic fragment containing the putative glycosyltransferase domain was tested in isolation for activity against T cells, and was not sufficient for activity. Tryptophan fluorescence studies indicated thatlymphostatin binds uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) but not UDP-glucose (UDP-Glc). Substitution of the predicted DXD glycosyltransferase motif with alanine residues abolished UDP-GlcNAc binding and lymphostatin activity, although other biophysical properties were unchanged. The data indicate that lymphostatin has UDP-sugar binding potential that is critical for activity, and is a major leap toward identifying the nature and consequences of modifications of host cell factors.


Sujet(s)
Toxines bactériennes/composition chimique , Toxines bactériennes/immunologie , Maladies des bovins/immunologie , Escherichia coli entéropathogène/immunologie , Infections à Escherichia coli/médecine vétérinaire , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/immunologie , Lymphocytes T/microbiologie , Séquence d'acides aminés , Animaux , Bovins , Maladies des bovins/microbiologie , Escherichia coli entéropathogène/composition chimique , Infections à Escherichia coli/immunologie , Infections à Escherichia coli/microbiologie , Glycosyltransferase/composition chimique , Glycosyltransferase/immunologie , Humains , Activation des lymphocytes , Modèles moléculaires , Données de séquences moléculaires , Structure tertiaire des protéines , Diffusion aux petits angles , Alignement de séquences , Lymphocytes T/immunologie , Facteurs de virulence/immunologie , Diffraction des rayons X
12.
Biochimie ; 114: 10-7, 2015 Jul.
Article de Anglais | MEDLINE | ID: mdl-25633441

RÉSUMÉ

Activation of toxin-antitoxin (TA) systems provides an important mechanism for bacteria to adapt to challenging and ever changing environmental conditions. Known TA systems are classified into five families based on the mechanisms of antitoxin inhibition and toxin activity. For type II TA systems, the toxin is inactivated in exponentially growing cells by tightly binding its antitoxin partner protein, which also serves to regulate cellular levels of the complex through transcriptional auto-repression. During cellular stress, however, the antitoxin is degraded thus freeing the toxin, which is then able to regulate central cellular processes, primarily protein translation to adjust cell growth to the new conditions. In this review, we focus on the type II TA pairs that regulate protein translation through cleavage of ribosomal, transfer, or messenger RNA.


Sujet(s)
Protéines bactériennes/génétique , Toxines bactériennes/génétique , Clivage de l'ARN , Antitoxines/composition chimique , Antitoxines/physiologie , Protéines bactériennes/biosynthèse , Protéines bactériennes/composition chimique , Toxines bactériennes/biosynthèse , Toxines bactériennes/composition chimique , Domaine catalytique , Régulation de l'expression des gènes bactériens , Modèles moléculaires , Liaison aux protéines , Biosynthèse des protéines
13.
PLoS One ; 9(7): e103470, 2014.
Article de Anglais | MEDLINE | ID: mdl-25062267

RÉSUMÉ

The THO complex participates during eukaryotic mRNA biogenesis in coupling transcription to formation and nuclear export of translation-competent messenger ribonucleoprotein particles. In Saccharomyces cerevisiae, THO has been defined as a heteropentamer composed of the Tho2p, Hpr1p, Tex1p, Mft1p, and Thp2p subunits and the overall three-dimensional shape of the complex has been established by negative stain electron microscopy. Here, we use small-angle X-ray scattering measured for isolated THO components (Mft1p and Thp2p) as well as THO subcomplexes (Mft1p-Thp2p and Mft1p-Thp2p-Tho2p) to construct structural building blocks that allow positioning of each subunit within the complex. To accomplish this, the individual envelopes determined for Mft1p and Thp2p are first fitted inside those of the Mft1p-Thp2p and Mft1p-Thp2p-Tho2p complexes. Next, the ternary complex structure is placed in the context of the five-component electron microscopy structure. Our model reveals not only the position of each protein in the THO complex relative to each other, but also shows that the pentamer is likely somewhat larger than what was observed by electron microscopy.


Sujet(s)
Protéines de transport/métabolisme , Protéines de liaison à l'ADN/composition chimique , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/métabolisme , Facteurs de transcription/composition chimique , Facteurs de clivage et de polyadénylation de l'ARN messager/composition chimique , Séquence d'acides aminés , Sites de fixation , Protéines de transport/composition chimique , Protéines de transport/génétique , Protéines de liaison à l'ADN/métabolisme , Données de séquences moléculaires , Liaison aux protéines , Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/génétique , Diffusion aux petits angles , Facteurs de transcription/métabolisme , Diffraction des rayons X , Facteurs de clivage et de polyadénylation de l'ARN messager/métabolisme
14.
Biochem Biophys Res Commun ; 450(1): 634-40, 2014 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-24937447

RÉSUMÉ

The RNase D-type 3'-5' exonuclease Rrp6p from Saccharomyces cerevisiae is a nuclear-specific cofactor of the RNA exosome and associates in vivo with Rrp47p (Lrp1p). Here, we show using biochemistry and small-angle X-ray scattering (SAXS) that Rrp6p and Rrp47p associate into a stable, heterodimeric complex with an elongated shape consistent with binding of Rrp47p to the nuclease domain and opposite of the HRDC domain of Rrp6p. Rrp47p reduces the exonucleolytic activity of Rrp6p on both single-stranded and structured RNA substrates without significantly altering the affinity towards RNA or the ability of Rrp6p to degrade RNA secondary structure.


Sujet(s)
Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/ultrastructure , Exosome multienzyme ribonuclease complex/métabolisme , Exosome multienzyme ribonuclease complex/ultrastructure , Protéines nucléaires/métabolisme , Protéines nucléaires/ultrastructure , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/ultrastructure , ARN/métabolisme , ARN/ultrastructure , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/ultrastructure , Séquence d'acides aminés , Sites de fixation , Simulation numérique , Protéines de liaison à l'ADN/composition chimique , Exosome multienzyme ribonuclease complex/composition chimique , Modèles chimiques , Modèles moléculaires , Données de séquences moléculaires , Protéines nucléaires/composition chimique , Liaison aux protéines , Conformation des protéines , ARN/composition chimique , Protéines de liaison à l'ARN/composition chimique , Protéines de Saccharomyces cerevisiae/composition chimique , Diffusion aux petits angles , Diffraction des rayons X
15.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 6): 827-31, 2014 Jun.
Article de Anglais | MEDLINE | ID: mdl-24915103

RÉSUMÉ

Fic domains in proteins are found in abundance in nature from the simplest prokaryotes to animals. Interestingly, Fic domains found in two virulence factors of Gram-negative bacteria have recently been demonstrated to catalyse the transfer of the AMP moiety from ATP to small host GTPases. This post-translational modification has attracted considerable interest and a role for adenylylation in pathology and physiology is emerging. This work was aimed at the structural characterization of a newly identified Fic protein of the Gram-positive bacterium Clostridium difficile. A constitutively active inhibitory helix mutant of C. difficile Fic was overexpressed in Escherichia coli, purified and crystallized by the vapour-diffusion technique. Preliminary X-ray crystallographic analysis shows that the crystals diffract to at least 1.68 Šresolution at a synchrotron X-ray source. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a=45.6, b=80.8, c=144.7 Å, α=ß=γ=90°. Two molecules per asymmetric unit corresponds to a Matthews coefficient of 2.37 Å3 Da(-1) and a solvent content of 48%.


Sujet(s)
Protéines bactériennes/composition chimique , Clostridioides difficile/composition chimique , Cristallographie aux rayons X/méthodes , Protéines bactériennes/génétique , Clonage moléculaire , Cristallisation
16.
Article de Anglais | MEDLINE | ID: mdl-23832203

RÉSUMÉ

Upon release from the stable complex formed with its antitoxin VapB, the toxin VapC (MvpT) of the Gram-negative pathogen Shigella flexneri is capable of globally down-regulating translation by specifically cleaving initiator tRNA(fMet) in the anticodon region. Recombinant Shigella flexneri VapC(D7A) harbouring an active-site mutation was overexpressed in Escherichia coli, purified to homogeneity and crystallized by the vapour-diffusion technique. A preliminary X-ray crystallographic analysis shows that the crystals diffracted to at least 1.9 Å resolution at a synchrotron X-ray source and belonged to the trigonal space group in the hexagonal setting, H3, with unit-cell parameters a = b = 120.1, c = 52.5 Å, α = ß = 90, γ = 120°. The Matthews coefficient is 2.46 Å(3) Da(-1), suggesting two molecules per asymmetric unit and corresponding to a solvent content of 50.0%.


Sujet(s)
ARN de transfert de la méthionine/métabolisme , Shiga-toxine/composition chimique , Shiga-toxine/isolement et purification , Shigella flexneri/enzymologie , Domaine catalytique , Cristallisation , Cristallographie aux rayons X , Dysenterie bacillaire/génétique , Dysenterie bacillaire/métabolisme , Dysenterie bacillaire/microbiologie , Shiga-toxine/métabolisme , Synchrotrons
17.
Nucleic Acids Res ; 40(2): 837-46, 2012 Jan.
Article de Anglais | MEDLINE | ID: mdl-21965533

RÉSUMÉ

Deadenylation is the first and rate-limiting step during turnover of mRNAs in eukaryotes. In the yeast, Saccharomyces cerevisiae, two distinct 3'-5' exonucleases, Pop2p and Ccr4p, have been identified within the Ccr4-NOT deadenylase complex, belonging to the DEDD and Exonuclease-Endonuclease-Phosphatase (EEP) families, respectively. Ngl3p has been identified as a new member of the EEP family of exonucleases based on sequence homology, but its activity and biological roles are presently unknown. Here, we show using in vitro deadenylation assays on defined RNA species mimicking poly-A containing mRNAs that yeast Ngl3p is a functional 3'-5' exonuclease most active at slightly acidic conditions. We further show that the enzyme depends on divalent metal ions for activity and possesses specificity towards poly-A RNA similar to what has been observed for cellular deadenylases. The results suggest that Ngl3p is naturally involved in processing of poly-adenylated RNA and provide insights into the mechanistic variations observed among the redundant set of EEP enzymes found in yeast and higher eukaryotes.


Sujet(s)
Exoribonucleases/métabolisme , Poly A/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/enzymologie , Exoribonucleases/génétique , Délétion de gène , Conformation d'acide nucléique , Poly G/métabolisme , ARN messager/composition chimique , ARN messager/métabolisme , Ribonucléases/métabolisme , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/croissance et développement , Protéines de Saccharomyces cerevisiae/génétique , Spécificité du substrat
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...