Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 18 de 18
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
EMBO J ; 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-39039287

RÉSUMÉ

The CMG helicase is the stable core of the eukaryotic replisome and is ubiquitylated and disassembled during DNA replication termination. Fungi and animals use different enzymes to ubiquitylate the Mcm7 subunit of CMG, suggesting that CMG ubiquitylation arose repeatedly during eukaryotic evolution. Until now, it was unclear whether cells also have ubiquitin-independent pathways for helicase disassembly and whether CMG disassembly is essential for cell viability. Using reconstituted assays with budding yeast CMG, we generated the mcm7-10R allele that compromises ubiquitylation by SCFDia2. mcm7-10R delays helicase disassembly in vivo, driving genome instability in the next cell cycle. These data indicate that defective CMG ubiquitylation explains the major phenotypes of cells lacking Dia2. Notably, the viability of mcm7-10R and dia2∆ is dependent upon the related Rrm3 and Pif1 DNA helicases that have orthologues in all eukaryotes. We show that Rrm3 acts during S-phase to disassemble old CMG complexes from the previous cell cycle. These findings indicate that CMG disassembly is essential in yeast cells and suggest that Pif1-family helicases might have mediated CMG disassembly in ancestral eukaryotes.

2.
EMBO J ; 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-39039288

RÉSUMÉ

The eukaryotic replisome is assembled around the CMG (CDC45-MCM-GINS) replicative helicase, which encircles the leading-strand DNA template at replication forks. When CMG stalls during DNA replication termination, or at barriers such as DNA-protein crosslinks on the leading strand template, a second helicase is deployed on the lagging strand template to support replisome progression. How these 'accessory' helicases are targeted to the replisome to mediate barrier bypass and replication termination remains unknown. Here, by combining AlphaFold structural modelling with experimental validation, we show that the budding yeast Rrm3 accessory helicase contains two Short Linear Interaction Motifs (SLIMs) in its disordered N-terminus, which interact with CMG and the leading-strand DNA polymerase Polε on one side of the replisome. This flexible tether positions Rrm3 adjacent to the lagging strand template on which it translocates, and is critical for replication termination in vitro and Rrm3 function in vivo. The primary accessory helicase in metazoa, RTEL1, is evolutionarily unrelated to Rrm3, but binds to CMG and Polε in an analogous manner, revealing a conserved docking mechanism for accessory helicases in the eukaryotic replisome.

3.
Genetics ; 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38979911

RÉSUMÉ

The meiosis-specific kinase Mek1 regulates key steps in meiotic recombination in the budding yeast, Saccharomyces cerevisiae. MEK1 limits resection at double strand break (DSB) ends and is required for preferential strand invasion into homologs, a process known as interhomolog bias. After strand invasion, MEK1 promotes phosphorylation of the synaptonemal complex protein Zip1 that is necessary for DSB repair mediated by a crossover specific pathway that enables chromosome synapsis. In addition, Mek1 phosphorylation of the meiosis-specific transcription factor, Ndt80, regulates the meiotic recombination checkpoint that prevents exit from pachytene when DSBs are present. Mek1 interacts with Ndt80 through a five amino acid sequence, RPSKR, located between the DNA binding and activation domains of Ndt80. AlphaFold Multimer modeling of a fragment of Ndt80 containing the RPSKR motif and full length Mek1 indicated that RPSKR binds to an acidic loop located in the Mek1 FHA domain, a non-canonical interaction with this motif. A second protein, the 5'-3' helicase Rrm3, similarly interacts with Mek1 through an RPAKR motif and is an in vitro substrate of Mek1. Genetic analysis using various mutants in the MEK1 acidic loop validated the AlphaFold model, in that they specifically disrupt two-hybrid interactions with Ndt80 and Rrm3. Phenotypic analyses further showed that the acidic loop mutants are defective in the meiotic recombination checkpoint, and in certain circumstances exhibit more severe phenotypes compared to the NDT80 mutant with the RPSKR sequence deleted, suggesting that additional, as yet unknown, substrates of Mek1 also bind to Mek1 using an RPXKR motif.

4.
bioRxiv ; 2024 May 25.
Article de Anglais | MEDLINE | ID: mdl-38826409

RÉSUMÉ

The meiosis-specific kinase Mek1 regulates key steps in meiotic recombination in the budding yeast, Saccharomyces cerevisiae. MEK1 limits resection at the double strand break (DSB) ends and is required for preferential strand invasion into homologs, a process known as interhomolog bias. After strand invasion, MEK1 promotes phosphorylation of the synaptonemal complex protein Zip1 that is necessary for DSB repair mediated by a crossover specific pathway that enables chromosome synapsis. In addition, Mek1 phosphorylation of the meiosis-specific transcription factor, Ndt80, regulates the meiotic recombination checkpoint that prevents exit from pachytene when DSBs are present. Mek1 interacts with Ndt80 through a five amino acid sequence, RPSKR, located between the DNA binding and activation domains of Ndt80. AlphaFold Multimer modeling of a fragment of Ndt80 containing the RPSKR motif and full length Mek1 indicated that RPSKR binds to an acidic loop located in the Mek1 FHA domain, a non-canonical interaction with this motif. A second protein, the 5'-3' helicase Rrm3, similarly interacts with Mek1 through an RPAKR motif and is an in vitro substrate of Mek1. Genetic analysis using various mutants in the MEK1 acidic loop validated the AlphaFold model, in that they specifically disrupt two-hybrid interactions with Ndt80 and Rrm3. Phenotypic analyses further showed that the acidic loop mutants are defective in the meiotic recombination checkpoint, and in certain circumstances exhibit more severe phenotypes compared to the NDT80 mutant with the RPSKR sequence deleted, suggesting that additional, as yet unknown, substrates of Mek1 also bind to Mek1 using an RPXKR motif.

5.
Sci Adv ; 10(23): eadn7191, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38848361

RÉSUMÉ

Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) are a frequent cause of early-onset Parkinson's disease (PD). Stabilization of PINK1 at the translocase of outer membrane (TOM) complex of damaged mitochondria is critical for its activation. The mechanism of how PINK1 is activated in the TOM complex is unclear. Here, we report that co-expression of human PINK1 and all seven TOM subunits in Saccharomyces cerevisiae is sufficient for PINK1 activation. We use this reconstitution system to systematically assess the role of each TOM subunit toward PINK1 activation. We unambiguously demonstrate that the TOM20 and TOM70 receptor subunits are required for optimal PINK1 activation and map their sites of interaction with PINK1 using AlphaFold structural modeling and mutagenesis. We also demonstrate an essential role of the pore-containing subunit TOM40 and its structurally associated subunits TOM7 and TOM22 for PINK1 activation. These findings will aid in the development of small-molecule activators of PINK1 as a therapeutic strategy for PD.


Sujet(s)
Protéines de transport de la membrane mitochondriale , Protéines du complexe d'import des protéines précurseurs mitochondriales , Protein kinases , Saccharomyces cerevisiae , Protein kinases/métabolisme , Protein kinases/génétique , Humains , Protéines du complexe d'import des protéines précurseurs mitochondriales/métabolisme , Protéines de transport de la membrane mitochondriale/métabolisme , Protéines de transport de la membrane mitochondriale/génétique , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Mitochondries/métabolisme , Liaison aux protéines , Activation enzymatique , Modèles moléculaires , Sous-unités de protéines/métabolisme , Sous-unités de protéines/génétique
6.
Trends Genet ; 38(10): 987-988, 2022 10.
Article de Anglais | MEDLINE | ID: mdl-35643778

RÉSUMÉ

Claussin et al. introduce Replicon-seq, a new genome-wide DNA sequencing technology that monitors the progression of individual replisomes at high resolution in vivo.


Sujet(s)
Réplication de l'ADN , Réplicon , ADN , Helicase/métabolisme , Réplicon/génétique
7.
Nature ; 600(7890): 743-747, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34700328

RÉSUMÉ

Replisome disassembly is the final step of eukaryotic DNA replication and is triggered by ubiquitylation of the CDC45-MCM-GINS (CMG) replicative helicase1-3. Despite being driven by evolutionarily diverse E3 ubiquitin ligases in different eukaryotes (SCFDia2 in budding yeast1, CUL2LRR1 in metazoa4-7), replisome disassembly is governed by a common regulatory principle, in which ubiquitylation of CMG is suppressed before replication termination, to prevent replication fork collapse. Recent evidence suggests that this suppression is mediated by replication fork DNA8-10. However, it is unknown how SCFDia2 and CUL2LRR1 discriminate terminated from elongating replisomes, to selectively ubiquitylate CMG only after termination. Here we used cryo-electron microscopy to solve high-resolution structures of budding yeast and human replisome-E3 ligase assemblies. Our structures show that the leucine-rich repeat domains of Dia2 and LRR1 are structurally distinct, but bind to a common site on CMG, including the MCM3 and MCM5 zinc-finger domains. The LRR-MCM interaction is essential for replisome disassembly and, crucially, is occluded by the excluded DNA strand at replication forks, establishing the structural basis for the suppression of CMG ubiquitylation before termination. Our results elucidate a conserved mechanism for the regulation of replisome disassembly in eukaryotes, and reveal a previously unanticipated role for DNA in preserving replisome integrity.


Sujet(s)
Réplication de l'ADN , Eucaryotes , Cryomicroscopie électronique , ADN/métabolisme , Helicase/métabolisme , Eucaryotes/génétique , Humains , Ubiquitin-protein ligases/métabolisme
8.
EMBO J ; 40(17): e108053, 2021 09 01.
Article de Anglais | MEDLINE | ID: mdl-34269473

RÉSUMÉ

The eukaryotic replisome is rapidly disassembled during DNA replication termination. In metazoa, the cullin-RING ubiquitin ligase CUL-2LRR-1 drives ubiquitylation of the CMG helicase, leading to replisome disassembly by the p97/CDC-48 "unfoldase". Here, we combine in vitro reconstitution with in vivo studies in Caenorhabditis elegans embryos, to show that the replisome-associated TIMELESS-TIPIN complex is required for CUL-2LRR-1 recruitment and efficient CMG helicase ubiquitylation. Aided by TIMELESS-TIPIN, CUL-2LRR-1 directs a suite of ubiquitylation enzymes to ubiquitylate the MCM-7 subunit of CMG. Subsequently, the UBXN-3 adaptor protein directly stimulates the disassembly of ubiquitylated CMG by CDC-48_UFD-1_NPL-4. We show that UBXN-3 is important in vivo for replisome disassembly in the absence of TIMELESS-TIPIN. Correspondingly, co-depletion of UBXN-3 and TIMELESS causes profound synthetic lethality. Since the human orthologue of UBXN-3, FAF1, is a candidate tumour suppressor, these findings suggest that manipulation of CMG disassembly might be applicable to future strategies for treating human cancer.


Sujet(s)
Protéines de Caenorhabditis elegans/métabolisme , Protéines de transport/métabolisme , Réplication de l'ADN , DNA-directed DNA polymerase/métabolisme , Complexes multienzymatiques/métabolisme , Animaux , Caenorhabditis elegans , Protéines de Caenorhabditis elegans/génétique , Protéines de transport/génétique , Cullines/génétique , Cullines/métabolisme , Mutations synthétiques létales
9.
Biochem J ; 478(13): 2465-2479, 2021 07 16.
Article de Anglais | MEDLINE | ID: mdl-34198324

RÉSUMÉ

SARS-CoV-2 is responsible for COVID-19, a human disease that has caused over 2 million deaths, stretched health systems to near-breaking point and endangered economies of countries and families around the world. Antiviral treatments to combat COVID-19 are currently lacking. Remdesivir, the only antiviral drug approved for the treatment of COVID-19, can affect disease severity, but better treatments are needed. SARS-CoV-2 encodes 16 non-structural proteins (nsp) that possess different enzymatic activities with important roles in viral genome replication, transcription and host immune evasion. One key aspect of host immune evasion is performed by the uridine-directed endoribonuclease activity of nsp15. Here we describe the expression and purification of nsp15 recombinant protein. We have developed biochemical assays to follow its activity, and we have found evidence for allosteric behaviour. We screened a custom chemical library of over 5000 compounds to identify nsp15 endoribonuclease inhibitors, and we identified and validated NSC95397 as an inhibitor of nsp15 endoribonuclease in vitro. Although NSC95397 did not inhibit SARS-CoV-2 growth in VERO E6 cells, further studies will be required to determine the effect of nsp15 inhibition on host immune evasion.


Sujet(s)
Antiviraux/composition chimique , Antiviraux/pharmacologie , Évaluation préclinique de médicament , Endoribonucleases/antagonistes et inhibiteurs , SARS-CoV-2/enzymologie , Bibliothèques de petites molécules/pharmacologie , Protéines virales non structurales/antagonistes et inhibiteurs , Régulation allostérique , Animaux , Chlorocebus aethiops , Endoribonucleases/isolement et purification , Endoribonucleases/métabolisme , Dosages enzymatiques , Fluorescence , Tests de criblage à haut débit , Techniques in vitro , Cinétique , Naphtoquinones/pharmacologie , Reproductibilité des résultats , SARS-CoV-2/effets des médicaments et des substances chimiques , SARS-CoV-2/croissance et développement , Bibliothèques de petites molécules/composition chimique , Solutions , Cellules Vero , Protéines virales non structurales/isolement et purification , Protéines virales non structurales/métabolisme
10.
Biochem J ; 478(13): 2445-2464, 2021 07 16.
Article de Anglais | MEDLINE | ID: mdl-34198326

RÉSUMÉ

SARS-CoV-2 is a coronavirus that emerged in 2019 and rapidly spread across the world causing a deadly pandemic with tremendous social and economic costs. Healthcare systems worldwide are under great pressure, and there is an urgent need for effective antiviral treatments. The only currently approved antiviral treatment for COVID-19 is remdesivir, an inhibitor of viral genome replication. SARS-CoV-2 proliferation relies on the enzymatic activities of the non-structural proteins (nsp), which makes them interesting targets for the development of new antiviral treatments. With the aim to identify novel SARS-CoV-2 antivirals, we have purified the exoribonuclease/methyltransferase (nsp14) and its cofactor (nsp10) and developed biochemical assays compatible with high-throughput approaches to screen for exoribonuclease inhibitors. We have screened a library of over 5000 commercial compounds and identified patulin and aurintricarboxylic acid (ATA) as inhibitors of nsp14 exoribonuclease in vitro. We found that patulin and ATA inhibit replication of SARS-CoV-2 in a VERO E6 cell-culture model. These two new antiviral compounds will be valuable tools for further coronavirus research as well as potentially contributing to new therapeutic opportunities for COVID-19.


Sujet(s)
Antiviraux/composition chimique , Antiviraux/pharmacologie , Évaluation préclinique de médicament , Exoribonucleases/antagonistes et inhibiteurs , SARS-CoV-2/enzymologie , Bibliothèques de petites molécules/pharmacologie , Protéines virales non structurales/antagonistes et inhibiteurs , Protéines virales régulatrices ou accessoires/antagonistes et inhibiteurs , Animaux , Acide aurintricarboxylique/pharmacologie , Chlorocebus aethiops , Dosages enzymatiques , Exoribonucleases/métabolisme , Fluorescence , Tests de criblage à haut débit , Patuline/pharmacologie , Reproductibilité des résultats , SARS-CoV-2/effets des médicaments et des substances chimiques , Bibliothèques de petites molécules/composition chimique , Cellules Vero , Protéines virales non structurales/métabolisme , Protéines virales régulatrices ou accessoires/métabolisme
11.
Biochem J ; 478(13): 2499-2515, 2021 07 16.
Article de Anglais | MEDLINE | ID: mdl-34198327

RÉSUMÉ

The coronavirus 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread around the world with unprecedented health and socio-economic effects for the global population. While different vaccines are now being made available, very few antiviral drugs have been approved. The main viral protease (nsp5) of SARS-CoV-2 provides an excellent target for antivirals, due to its essential and conserved function in the viral replication cycle. We have expressed, purified and developed assays for nsp5 protease activity. We screened the nsp5 protease against a custom chemical library of over 5000 characterised pharmaceuticals. We identified calpain inhibitor I and three different peptidyl fluoromethylketones (FMK) as inhibitors of nsp5 activity in vitro, with IC50 values in the low micromolar range. By altering the sequence of our peptidomimetic FMK inhibitors to better mimic the substrate sequence of nsp5, we generated an inhibitor with a subnanomolar IC50. Calpain inhibitor I inhibited viral infection in monkey-derived Vero E6 cells, with an EC50 in the low micromolar range. The most potent and commercially available peptidyl-FMK compound inhibited viral growth in Vero E6 cells to some extent, while our custom peptidyl FMK inhibitor offered a marked antiviral improvement.


Sujet(s)
Antiviraux/composition chimique , Antiviraux/pharmacologie , Protéases 3C des coronavirus/antagonistes et inhibiteurs , Évaluation préclinique de médicament , SARS-CoV-2/enzymologie , Bibliothèques de petites molécules/pharmacologie , Chlorométhyl cétones d'acides aminés/pharmacologie , Animaux , Azoles/pharmacologie , Chlorocebus aethiops , Protéases 3C des coronavirus/génétique , Protéases 3C des coronavirus/isolement et purification , Protéases 3C des coronavirus/métabolisme , Dosages enzymatiques , Transfert d'énergie par résonance de fluorescence , Tests de criblage à haut débit , Isoindoles , Leupeptines/pharmacologie , Composés organiques du sélénium/pharmacologie , Peptidomimétiques , Protéines de liaison à l'ARN/métabolisme , Reproductibilité des résultats , SARS-CoV-2/effets des médicaments et des substances chimiques , Bibliothèques de petites molécules/composition chimique , Cellules Vero , Protéines virales non structurales/métabolisme
12.
Biochem J ; 478(13): 2481-2497, 2021 07 16.
Article de Anglais | MEDLINE | ID: mdl-34198328

RÉSUMÉ

The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause a fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. To identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play key roles in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2'-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified four compounds as potential inhibitors of nsp14, all of which also showed antiviral capacity in a cell-based model of SARS-CoV-2 infection. Three of the four compounds also exhibited synergistic effects on viral replication with remdesivir.


Sujet(s)
Antiviraux/pharmacologie , Évaluation préclinique de médicament , Exoribonucleases/antagonistes et inhibiteurs , Methyltransferases/antagonistes et inhibiteurs , Coiffes des ARN/métabolisme , SARS-CoV-2/enzymologie , Bibliothèques de petites molécules/pharmacologie , Protéines virales non structurales/antagonistes et inhibiteurs , AMP/analogues et dérivés , AMP/pharmacologie , Alanine/analogues et dérivés , Alanine/pharmacologie , Animaux , Antiviraux/composition chimique , Chlorobenzènes/pharmacologie , Chlorocebus aethiops , Dosages enzymatiques , Exoribonucleases/génétique , Exoribonucleases/isolement et purification , Exoribonucleases/métabolisme , Transfert d'énergie par résonance de fluorescence , Tests de criblage à haut débit , Indazoles/pharmacologie , Indènes/pharmacologie , Indoles/pharmacologie , Methyltransferases/génétique , Methyltransferases/isolement et purification , Methyltransferases/métabolisme , Nitriles/pharmacologie , Phénothiazines/pharmacologie , Purines/pharmacologie , Reproductibilité des résultats , SARS-CoV-2/effets des médicaments et des substances chimiques , Bibliothèques de petites molécules/composition chimique , Spécificité du substrat , Triflupéridol/pharmacologie , Cellules Vero , Protéines virales non structurales/génétique , Protéines virales non structurales/isolement et purification , Protéines virales non structurales/métabolisme , Protéines virales régulatrices ou accessoires/génétique , Protéines virales régulatrices ou accessoires/isolement et purification , Protéines virales régulatrices ou accessoires/métabolisme
13.
Elife ; 92020 08 17.
Article de Anglais | MEDLINE | ID: mdl-32804080

RÉSUMÉ

The eukaryotic replisome assembles around the CMG helicase, which stably associates with DNA replication forks throughout elongation. When replication terminates, CMG is ubiquitylated on its Mcm7 subunit and disassembled by the Cdc48/p97 ATPase. Until now, the regulation that restricts CMG ubiquitylation to termination was unknown, as was the mechanism of disassembly. By reconstituting these processes with purified budding yeast proteins, we show that ubiquitylation is tightly repressed throughout elongation by the Y-shaped DNA structure of replication forks. Termination removes the repressive DNA structure, whereupon long K48-linked ubiquitin chains are conjugated to CMG-Mcm7, dependent on multiple replisome components that bind to the ubiquitin ligase SCFDia2. This mechanism pushes CMG beyond a '5-ubiquitin threshold' that is inherent to Cdc48, which specifically unfolds ubiquitylated Mcm7 and thereby disassembles CMG. These findings explain the exquisite regulation of CMG disassembly and provide a general model for the disassembly of ubiquitylated protein complexes by Cdc48.


Sujet(s)
Helicase , Réplication de l'ADN , ADN , Ubiquitine , ADN/composition chimique , ADN/métabolisme , Helicase/composition chimique , Helicase/métabolisme , Escherichia coli , Humains , Conformation d'acide nucléique , Protéines recombinantes/composition chimique , Protéines recombinantes/métabolisme , Ubiquitine/composition chimique , Ubiquitine/métabolisme , Protéine contenant la valosine/composition chimique , Protéine contenant la valosine/métabolisme
14.
Mol Cell ; 74(2): 231-244.e9, 2019 04 18.
Article de Anglais | MEDLINE | ID: mdl-30850330

RÉSUMÉ

The convergence of two DNA replication forks creates unique problems during DNA replication termination. In E. coli and SV40, the release of torsional strain by type II topoisomerases is critical for converging replisomes to complete DNA synthesis, but the pathways that mediate fork convergence in eukaryotes are unknown. We studied the convergence of reconstituted yeast replication forks that include all core replisome components and both type I and type II topoisomerases. We found that most converging forks stall at a very late stage, indicating a role for additional factors. We showed that the Pif1 and Rrm3 DNA helicases promote efficient fork convergence and completion of DNA synthesis, even in the absence of type II topoisomerase. Furthermore, Rrm3 and Pif1 are also important for termination of plasmid DNA replication in vivo. These findings identify a eukaryotic pathway for DNA replication termination that is distinct from previously characterized prokaryotic mechanisms.


Sujet(s)
Helicase/génétique , Réplication de l'ADN/génétique , Protéines de Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/génétique , DNA topoisomerases/génétique , Escherichia coli/génétique , Eucaryotes/génétique , Instabilité du génome , Plasmides/génétique
15.
Curr Opin Struct Biol ; 37: 145-51, 2016 Apr.
Article de Anglais | MEDLINE | ID: mdl-26866665

RÉSUMÉ

Precise replication of the eukaryotic genome is achieved primarily through strict regulation of the enzyme responsible for DNA unwinding, the replicative helicase. The motor of this helicase is a hexameric AAA+ ATPase called MCM. The loading of MCM onto DNA and its subsequent activation and disassembly are each restricted to separate cell cycle phases; this ensures that a functional replisome is only built once at any replication origin. In recent years, biochemical and structural studies have shown that distinct conformational changes in MCM, each requiring post-translational modifications and/or the activity of other replication proteins, define the various stages of the chromosome replication cycle. Here, we review recent progress in this area.


Sujet(s)
Adenosine triphosphatases/composition chimique , Adenosine triphosphatases/métabolisme , Chromosomes , ADN/composition chimique , Activation enzymatique , Maturation post-traductionnelle des protéines
16.
EMBO J ; 35(9): 961-73, 2016 05 02.
Article de Anglais | MEDLINE | ID: mdl-26912723

RÉSUMÉ

The initiation of eukaryotic DNA replication requires the assembly of active CMG (Cdc45-MCM-GINS) helicases at replication origins by a set of conserved and essential firing factors. This process is controlled during the cell cycle by cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), and in response to DNA damage by the checkpoint kinase Rad53/Chk1. Here we show that Sld3, previously shown to be an essential CDK and Rad53 substrate, is recruited to the inactive MCM double hexamer in a DDK-dependent manner. Sld3 binds specifically to DDK-phosphorylated peptides from two MCM subunits (Mcm4, 6) and then recruits Cdc45. MCM mutants that cannot bind Sld3 or Sld3 mutants that cannot bind phospho-MCM or Cdc45 do not support replication. Moreover, phosphomimicking mutants in Mcm4 and Mcm6 bind Sld3 without DDK and facilitate DDK-independent replication. Thus, Sld3 is an essential "reader" of DDK phosphorylation, integrating signals from three distinct protein kinase pathways to coordinate DNA replication during S phase.


Sujet(s)
Protéines du cycle cellulaire/métabolisme , Protéines de liaison à l'ADN/métabolisme , Composant-4 du complexe de maintenance des minichromosomes/métabolisme , Composant-6 du complexe de maintenance des minichromosomes/métabolisme , Phosphopeptides/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Origine de réplication , Protéines de Saccharomyces cerevisiae/métabolisme , Réplication de l'ADN , Protéines nucléaires/métabolisme , Liaison aux protéines , Saccharomyces cerevisiae/enzymologie , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/croissance et développement
17.
Nature ; 519(7544): 431-5, 2015 Mar 26.
Article de Anglais | MEDLINE | ID: mdl-25739503

RÉSUMÉ

Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.


Sujet(s)
Réplication de l'ADN , Origine de réplication/physiologie , Protéines de Saccharomyces cerevisiae/isolement et purification , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines du cycle cellulaire/métabolisme , Kinases cyclines-dépendantes/métabolisme , Protéines de liaison à l'ADN/métabolisme , DNA-directed DNA polymerase/métabolisme , Protéines de maintenance des minichromosomes/métabolisme , Complexes multienzymatiques/métabolisme , Complexes multiprotéiques/composition chimique , Complexes multiprotéiques/métabolisme , Protéines nucléaires/métabolisme , Phosphorylation , Protein-Serine-Threonine Kinases/métabolisme , Origine de réplication/génétique , Protéine A de réplication/métabolisme , Saccharomyces cerevisiae/enzymologie
18.
Curr Biol ; 22(8): 720-6, 2012 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-22464192

RÉSUMÉ

Synthesis of deoxynucleoside triphosphates (dNTPs) is required for both DNA replication and DNA repair and is catalyzed by ribonucleotide reductases (RNR), which convert ribonucleotides to their deoxy forms [1, 2]. Maintaining the correct levels of dNTPs for DNA synthesis is important for minimizing the mutation rate [3-7], and this is achieved by tight regulation of RNR [2, 8, 9]. In fission yeast, RNR is regulated in part by a small protein inhibitor, Spd1, which is degraded in S phase and after DNA damage to allow upregulation of dNTP supply [10-12]. Spd1 degradation is mediated by the activity of the CRL4(Cdt2) ubiquitin ligase complex [5, 13, 14]. This has been reported to be dependent on modulation of Cdt2 levels, which are cell cycle regulated, peaking in S phase, and which also increase after DNA damage in a checkpoint-dependent manner [7, 13]. We show here that Cdt2 level fluctuations are not sufficient to regulate Spd1 proteolysis and that the key step in this event is the interaction of Spd1 with the polymerase processivity factor proliferating cell nuclear antigen (PCNA), complexed onto DNA. This mechanism thus provides a direct link between DNA synthesis and RNR regulation.


Sujet(s)
Protéines adaptatrices de la transduction du signal/métabolisme , Protéines du cycle cellulaire/métabolisme , ADN fongique/biosynthèse , Antigène nucléaire de prolifération cellulaire/métabolisme , Ribonucleotide reductases/métabolisme , Protéines de Schizosaccharomyces pombe/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Séquence d'acides aminés , Protéines du cycle cellulaire/génétique , Chromatine/métabolisme , Données de séquences moléculaires , Mutation , Antigène nucléaire de prolifération cellulaire/génétique , Ribonucleotide reductases/génétique , Schizosaccharomyces/génétique , Schizosaccharomyces/métabolisme , Protéines de Schizosaccharomyces pombe/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE