Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Rep ; 14(1): 18817, 2024 08 13.
Article de Anglais | MEDLINE | ID: mdl-39138283

RÉSUMÉ

This study aimed to investigate the biodegradation behaviour of starch/nanocellulose/black tea extract (SNBTE) films in a 30-day soil burial test. The SNBTE films were prepared by mixing commercial starch, nanocellulose (2, 4, and 6%), and an aqueous solution of black tea extract by a simple mixing and casting process. The chemical and morphological properties of the SNBTE films before and after biodegradation were characterized using the following analytical techniques such as field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and fourier transform infrared (FTIR). The changes in soil composition, namely pH, electrical conductivity (EC), moisture content, water holding capacity (WHC), soil respiration, total nitrogen, weight mean diameter (MDW), and geometric mean diameter (GMD), as a result of the biodegradation process, were also estimated. The results showed that the films exhibited considerable biodegradability (35-67%) within 30 days while increasing soil nutrients. The addition of black tea extract reduced the biodegradation rate due to its polyphenol content, which likely resulted in a reduction in microbial activity. The addition of nanocellulose (2-6% weight of starch) increased the tensile strength, but decreased the elongation at break of the films. These results suggest that starch nanocellulose and SNBTE films are not only biodegradable under soil conditions but also positively contribute to soil health, highlighting their potential as an environmentally friendly alternative to traditional plastic films in the packaging industry.


Sujet(s)
Dépollution biologique de l'environnement , Cellulose , Extraits de plantes , Sol , Amidon , Thé , Amidon/composition chimique , Amidon/métabolisme , Sol/composition chimique , Thé/composition chimique , Cellulose/composition chimique , Cellulose/métabolisme , Extraits de plantes/composition chimique , Résistance à la traction
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE