Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 41
Filtrer
1.
Clin Cancer Res ; 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39078310

RÉSUMÉ

PURPOSE: Effective therapies for metastatic osteosarcoma (OS) remain a critical unmet need. Targeting mRNA translation in metastatic OS offers a promising option, as selective translation drives synthesis of cytoprotective proteins under harsh microenvironmental conditions to facilitate metastatic competence. EXPERIMENTAL DESIGN: We assessed expression levels of eukaryotic translation factors in OS, revealing high expression of the eIF4A1 initiation factor. Using a panel of metastatic OS cell lines and PDX models, eIF4A1 inhibitors were evaluated for their ability to block proliferation and reduce survival under oxidative stress, mimicking harsh conditions of the lung microenvironment. Inhibitors were also evaluated for their anti-metastatic activity using the ex vivo pulmonary metastasis assay (PuMA) and in vivo metastasis models. Proteomics were performed to catalog which cytoprotective proteins or pathways were affected by eIF4A1 inhibition. RESULTS: CR-1-31B, a rocaglate-based eIF4A1 inhibitor, exhibited nanomolar cytotoxicity against all metastatic OS models tested. CR-1-31B exacerbated oxidative stress and apoptosis when OS cells were co-treated with a tert-butylhydroquinone (tBHQ), a chemical oxidative stress inducer. CR-1-31B potently inhibited OS growth in the PuMA model and in experimental and spontaneous models of OS lung metastasis. Proteomic analysis revealed that tBHQ-mediated upregulation of the NRF2 antioxidant factor was blocked by co-treatment with CR-1-31B. Genetic inactivation of NRF2 phenocopied the anti-metastatic activity of CR-1-31B. Finally, the clinical grade eIF4A1 phase 1-2 inhibitor, Zotatifin, similarly blocked NRF2 synthesis and the OS metastatic phenotype. CONCLUSIONS: Collectively, our data reveal that pharmacologic targeting of eIF4A1 is highly effective in blocking OS metastasis by blunting the NRF2 antioxidant response.

2.
Cell Death Dis ; 15(7): 501, 2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39003251

RÉSUMÉ

Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K) is a stress-responsive hub that inhibits the translation elongation factor eEF2, and consequently mRNA translation elongation, in response to hypoxia and nutrient deprivation. EEF2K is also involved in the response to DNA damage but its role in response to DNA crosslinks, as induced by cisplatin, is not known. Here we found that eEF2K is critical to mediate the cellular response to cisplatin. We uncovered that eEF2K deficient cells are more resistant to cisplatin treatment. Mechanistically, eEF2K deficiency blunts the activation of the DNA damage response associated ATM and ATR pathways, in turn preventing p53 activation and therefore compromising induction of cisplatin-induced apoptosis. We also report that loss of eEF2K delays the resolution of DNA damage triggered by cisplatin, suggesting that eEF2K contributes to DNA damage repair in response to cisplatin. In support of this, our data shows that eEF2K promotes the expression of the DNA repair protein ERCC1, critical for the repair of cisplatin-caused DNA damage. Finally, using Caenorhabditis elegans as an in vivo model, we find that deletion of efk-1, the worm eEF2K ortholog, mitigates the induction of germ cell death in response to cisplatin. Together, our data highlight that eEF2K represents an evolutionary conserved mediator of the DNA damage response to cisplatin which promotes p53 activation to induce cell death, or alternatively facilitates DNA repair, depending on the extent of DNA damage.


Sujet(s)
Caenorhabditis elegans , Cisplatine , Altération de l'ADN , Elongation Factor 2 Kinase , Protéine p53 suppresseur de tumeur , Cisplatine/pharmacologie , Protéine p53 suppresseur de tumeur/métabolisme , Protéine p53 suppresseur de tumeur/génétique , Elongation Factor 2 Kinase/métabolisme , Elongation Factor 2 Kinase/génétique , Animaux , Caenorhabditis elegans/effets des médicaments et des substances chimiques , Caenorhabditis elegans/génétique , Caenorhabditis elegans/métabolisme , Humains , Réparation de l'ADN/effets des médicaments et des substances chimiques , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Apoptose/effets des médicaments et des substances chimiques
3.
Cell ; 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38971152

RÉSUMÉ

We identify a population of Protogenin-positive (PRTG+ve) MYChigh NESTINlow stem cells in the four-week-old human embryonic hindbrain that subsequently localizes to the ventricular zone of the rhombic lip (RLVZ). Oncogenic transformation of early Prtg+ve rhombic lip stem cells initiates group 3 medulloblastoma (Gr3-MB)-like tumors. PRTG+ve stem cells grow adjacent to a human-specific interposed vascular plexus in the RLVZ, a phenotype that is recapitulated in Gr3-MB but not in other types of medulloblastoma. Co-culture of Gr3-MB with endothelial cells promotes tumor stem cell growth, with the endothelial cells adopting an immature phenotype. Targeting the PRTGhigh compartment of Gr3-MB in vivo using either the diphtheria toxin system or chimeric antigen receptor T cells constitutes effective therapy. Human Gr3-MBs likely arise from early embryonic RLVZ PRTG+ve stem cells inhabiting a specific perivascular niche. Targeting the PRTGhigh compartment and/or the perivascular niche represents an approach to treat children with Gr3-MB.

4.
Nature ; 630(8016): 457-465, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38750365

RÉSUMÉ

Adoptively transferred T cells and agents designed to block the CD47-SIRPα axis are promising cancer therapeutics that activate distinct arms of the immune system1,2. Here we administered anti-CD47 antibodies in combination with adoptively transferred T cells with the goal of enhancing antitumour efficacy but observed abrogated therapeutic benefit due to rapid macrophage-mediated clearance of T cells expressing chimeric antigen receptors (CARs) or engineered T cell receptors. Anti-CD47-antibody-mediated CAR T cell clearance was potent and rapid enough to serve as an effective safety switch. To overcome this challenge, we engineered the CD47 variant CD47(Q31P) (47E), which engages SIRPα and provides a 'don't eat me' signal that is not blocked by anti-CD47 antibodies. TCR or CAR T cells expressing 47E are resistant to clearance by macrophages after treatment with anti-CD47 antibodies, and mediate substantial, sustained macrophage recruitment to the tumour microenvironment. Although many of the recruited macrophages manifested an M2-like profile3, the combined therapy synergistically enhanced antitumour efficacy. Our study identifies macrophages as major regulators of T cell persistence and illustrates the fundamental challenge of combining T-cell-directed therapeutics with those designed to activate macrophages. It delivers a therapeutic approach that is capable of simultaneously harnessing the antitumour effects of T cells and macrophages, offering enhanced potency against solid tumours.


Sujet(s)
Antigènes CD47 , Immunothérapie adoptive , Tumeurs , Lymphocytes T , Animaux , Femelle , Humains , Mâle , Souris , Antigènes de différenciation/immunologie , Antigènes de différenciation/métabolisme , Antigènes CD47/génétique , Antigènes CD47/immunologie , Antigènes CD47/métabolisme , Lignée cellulaire tumorale , Immunothérapie adoptive/méthodes , Macrophages/cytologie , Macrophages/immunologie , Tumeurs/immunologie , Tumeurs/métabolisme , Tumeurs/thérapie , Récepteurs aux antigènes des cellules T/génétique , Récepteurs aux antigènes des cellules T/immunologie , Récepteurs aux antigènes des cellules T/métabolisme , Récepteurs chimériques pour l'antigène/génétique , Récepteurs chimériques pour l'antigène/immunologie , Récepteurs chimériques pour l'antigène/métabolisme , Récepteurs immunologiques/immunologie , Récepteurs immunologiques/métabolisme , Lymphocytes T/immunologie , Lymphocytes T/métabolisme , Lymphocytes T/transplantation , Microenvironnement tumoral/immunologie , Anticorps/immunologie , Anticorps/usage thérapeutique , Activation des macrophages
5.
Brain Sci ; 14(3)2024 Feb 28.
Article de Anglais | MEDLINE | ID: mdl-38539613

RÉSUMÉ

Brain tumors represent some of the most aggressive malignancies [...].

6.
Mol Cell ; 84(2): 188-190, 2024 Jan 18.
Article de Anglais | MEDLINE | ID: mdl-38242097

RÉSUMÉ

In this issue of Molecular Cell, Hofman et al.1 identify the translation of a non-canonical upstream open reading frame of the ASNSD1 gene into a microprotein that supports medulloblastoma growth.


Sujet(s)
Tumeurs du cervelet , Médulloblastome , Humains , Médulloblastome/génétique , Cadres ouverts de lecture , , Carcinogenèse/génétique , Transformation cellulaire néoplasique/génétique , Tumeurs du cervelet/génétique , Biosynthèse des protéines
7.
Clin Cancer Res ; 30(5): 1022-1037, 2024 03 01.
Article de Anglais | MEDLINE | ID: mdl-37812652

RÉSUMÉ

PURPOSE: Ewing sarcoma is the second most common bone sarcoma in children, with 1 case per 1.5 million in the United States. Although the survival rate of patients diagnosed with localized disease is approximately 70%, this decreases to approximately 30% for patients with metastatic disease and only approximately 10% for treatment-refractory disease, which have not changed for decades. Therefore, new therapeutic strategies are urgently needed for metastatic and refractory Ewing sarcoma. EXPERIMENTAL DESIGN: This study analyzed 19 unique Ewing sarcoma patient- or cell line-derived xenografts (from 14 primary and 5 metastatic specimens) using proteomics to identify surface proteins for potential immunotherapeutic targeting. Plasma membranes were enriched using density gradient ultracentrifugation and compared with a reference standard of 12 immortalized non-Ewing sarcoma cell lines prepared in a similar manner. In parallel, global proteome analysis was carried out on each model to complement the surfaceome data. All models were analyzed by Tandem Mass Tags-based mass spectrometry to quantify identified proteins. RESULTS: The surfaceome and global proteome analyses identified 1,131 and 1,030 annotated surface proteins, respectively. Among surface proteins identified, both approaches identified known Ewing sarcoma-associated proteins, including IL1RAP, CD99, STEAP1, and ADGRG2, and many new cell surface targets, including ENPP1 and CDH11. Robust staining of ENPP1 was demonstrated in Ewing sarcoma tumors compared with other childhood sarcomas and normal tissues. CONCLUSIONS: Our comprehensive proteomic characterization of the Ewing sarcoma surfaceome provides a rich resource of surface-expressed proteins in Ewing sarcoma. This dataset provides the preclinical justification for exploration of targets such as ENPP1 for potential immunotherapeutic application in Ewing sarcoma. See related commentary by Bailey, p. 934.


Sujet(s)
Tumeurs osseuses , Sarcome d'Ewing , Sarcomes , Enfant , Humains , Sarcome d'Ewing/génétique , Sarcome d'Ewing/thérapie , Protéines membranaires , Protéome , Protéomique , Tumeurs osseuses/génétique , Tumeurs osseuses/thérapie , Immunothérapie , Antigènes néoplasiques , Oxidoreductases
8.
bioRxiv ; 2024 Jan 07.
Article de Anglais | MEDLINE | ID: mdl-38106022

RÉSUMÉ

Cancer immunotherapies have produced remarkable results in B-cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor specimens along with normal tissues to identify biologically relevant cell surface proteins that can serve as immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer of the developing nervous system. We apply this approach to human-derived cell lines (N=9) and cell/patient-derived xenograft (N=12) models of neuroblastoma. Plasma membrane-enriched mass spectrometry identified 1,461 cell surface proteins in cell lines and 1,401 in xenograft models, respectively. Additional proteogenomic analyses revealed 60 high-confidence candidate immunotherapeutic targets and we prioritized Delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlated with the presence of a super-enhancer spanning the DLK1 locus. Robust cell surface expression of DLK1 was validated by immunofluorescence, flow cytometry, and immunohistochemistry. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells resulted in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), showed potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Moreover, DLK1 is highly expressed in several adult cancer types, including adrenocortical carcinoma (ACC), pheochromocytoma/paraganglioma (PCPG), hepatoblastoma, and small cell lung cancer (SCLC), suggesting potential clinical benefit beyond neuroblastoma. Taken together, our study demonstrates the utility of comprehensive cancer surfaceome characterization and credentials DLK1 as an immunotherapeutic target. Highlights: Plasma membrane enriched proteomics defines surfaceome of neuroblastomaMulti-omic data integration prioritizes DLK1 as a candidate immunotherapeutic target in neuroblastoma and other cancersDLK1 expression is driven by a super-enhancer DLK1 silencing in neuroblastoma cells results in cellular differentiation ADCT-701, a DLK1-targeting antibody-drug conjugate, shows potent and specific cytotoxicity in DLK1-expressing neuroblastoma preclinical models.

9.
J Neuroophthalmol ; 2023 Dec 14.
Article de Anglais | MEDLINE | ID: mdl-38096033

RÉSUMÉ

BACKGROUND: The management of compressive optic neuropathy (CON) arising from nontraumatic compression of the optic nerve within the optic canal (OC) remains a topic of controversy. In this study, our aim was to assess the effectiveness and safety of endonasal endoscopic optic nerve decompression (EEOND). In addition, we conducted an analysis of prognostic factors that could potentially influence visual outcomes. METHODS: This retrospective cohort study was conducted between January 2015 and December 2021, involving adult patients (age > 18) diagnosed with CON and treated with EEOND at our specialized skull base expert center. The study evaluated the impact of surgery on visual acuity (VA), mean deficit (MD), and foveal threshold (FT) of the visual field (VF). These parameters were assessed preoperatively and at 3- and 12-month postoperative follow-ups. The relationship between clinical variables and the differences in postoperative to preoperative VA, MD, and FT of the visual field was analyzed through univariate and multivariate approaches. RESULTS: Thirty-six patients (38 eyes) were included, with a mean age of 52 (±12) years, and a female predominance (78%). The mean ophthalmologic follow-up duration was 38 (±32) months. At the 12-month follow-up, 39% of the patients exhibited a VA improvement of ≥0.2 LogMAR. Partial VF improvement (MD improvement ≥25%) was observed in 55% of the patients, whereas 19% experienced complete recovery. In multivariate analysis, the presence of a type 4 OC was identified as the sole negative prognostic factor for visual improvement (VA and VF) at 12 months. Six patients (17%) encountered minor surgical complications, all of which were managed conservatively and had no impact on visual outcomes. CONCLUSIONS: Our study demonstrates that EEOND is a safe and effective procedure, even in cases of severe and long-lasting CON caused by nontraumatic compression of the optic nerve at the level of the OC.

10.
Genome Med ; 15(1): 67, 2023 09 07.
Article de Anglais | MEDLINE | ID: mdl-37679810

RÉSUMÉ

BACKGROUND: Cancer immunotherapies including immune checkpoint inhibitors and Chimeric Antigen Receptor (CAR) T-cell therapy have shown variable response rates in paediatric patients highlighting the need to establish robust biomarkers for patient selection. While the tumour microenvironment in adults has been widely studied to delineate determinants of immune response, the immune composition of paediatric solid tumours remains relatively uncharacterized calling for investigations to identify potential immune biomarkers. METHODS: To inform immunotherapy approaches in paediatric cancers with embryonal origin, we performed an immunogenomic analysis of RNA-seq data from 925 treatment-naïve paediatric nervous system tumours (pedNST) spanning 12 cancer types from three publicly available data sets. RESULTS: Within pedNST, we uncovered four broad immune clusters: Paediatric Inflamed (10%), Myeloid Predominant (30%), Immune Neutral (43%) and Immune Desert (17%). We validated these clusters using immunohistochemistry, methylation immune inference and segmentation analysis of tissue images. We report shared biology of these immune clusters within and across cancer types, and characterization of specific immune cell frequencies as well as T- and B-cell repertoires. We found no associations between immune infiltration levels and tumour mutational burden, although molecular cancer entities were enriched within specific immune clusters. CONCLUSIONS: Given the heterogeneity of immune infiltration within pedNST, our findings suggest personalized immunogenomic profiling is needed to guide selection of immunotherapeutic strategies.


Sujet(s)
Tumeurs du système nerveux , Adulte , Humains , Enfant , Lymphocytes B , Inhibiteurs de points de contrôle immunitaires , Immunothérapie , Microenvironnement tumoral/génétique
11.
Sci Adv ; 9(34): eadg6693, 2023 08 25.
Article de Anglais | MEDLINE | ID: mdl-37611092

RÉSUMÉ

MYCN amplification (MNA) is a defining feature of high-risk neuroblastoma (NB) and predicts poor prognosis. However, whether genes within or in close proximity to the MYCN amplicon also contribute to MNA+ NB remains poorly understood. Here, we identify that GREB1, a transcription factor encoding gene neighboring the MYCN locus, is frequently coexpressed with MYCN and promotes cell survival in MNA+ NB. GREB1 controls gene expression independently of MYCN, among which we uncover myosin 1B (MYO1B) as being highly expressed in MNA+ NB and, using a chick chorioallantoic membrane (CAM) model, as a crucial regulator of invasion and metastasis. Global secretome and proteome profiling further delineates MYO1B in regulating secretome reprogramming in MNA+ NB cells, and the cytokine MIF as an important pro-invasive and pro-metastatic mediator of MYO1B activity. Together, we have identified a putative GREB1-MYO1B-MIF axis as an unconventional mechanism promoting aggressive behavior in MNA+ NB and independently of MYCN.


Sujet(s)
Neuroblastome , Sécrétome , Humains , Protéine du proto-oncogène N-Myc/génétique , Neuroblastome/génétique , Agressivité , Survie cellulaire
12.
Curr Oncol ; 30(5): 5024-5046, 2023 05 15.
Article de Anglais | MEDLINE | ID: mdl-37232837

RÉSUMÉ

In spite of recent advances in tumour molecular subtyping, pediatric brain tumours (PBTs) remain the leading cause of cancer-related deaths in children. While some PBTs are treatable with favourable outcomes, recurrent and metastatic disease for certain types of PBTs remains challenging and is often fatal. Tumour immunotherapy has emerged as a hopeful avenue for the treatment of childhood tumours, and recent immunotherapy efforts have been directed towards PBTs. This strategy has the potential to combat otherwise incurable PBTs, while minimizing off-target effects and long-term sequelae. As the infiltration and activation states of immune cells, including tumour-infiltrating lymphocytes and tumour-associated macrophages, are key to shaping responses towards immunotherapy, this review explores the immune landscape of the developing brain and discusses the tumour immune microenvironments of common PBTs, with hopes of conferring insights that may inform future treatment design.


Sujet(s)
Tumeurs du cerveau , Enfant , Humains , Tumeurs du cerveau/thérapie , Lymphocytes TIL , Immunothérapie , Évolution de la maladie , Encéphale , Microenvironnement tumoral
13.
Cancers (Basel) ; 14(19)2022 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-36230713

RÉSUMÉ

(1) Background: With the increasing life expectancy in the Western world, an increasing number of old patients presents with spinal meningioma. Considering the benign nature of these tumors, the functional outcome remains of great importance, since more people reach old age in general conditions of well-being and satisfactory autonomy. (2) Methods: We conducted an international multicenter retrospective study to investigate demographic, clinical and radiological data in a population of elderly patients (≥75 years of age) undergoing surgery for SM from January 2000 to December 2020 in four European referral centers. The aim was to identify prognostic and predictive factors for a good postoperative functional outcome. (3) Results: 72 patients were included in the study. Complete tumor resection (Simpson I or II) was achieved in 67 (95.7%) cases. Intraoperative complications were reported in 7 (9.9%) patients while postoperative complications were found in 12 (16.7%). An excellent general postoperative status (McCormick I and II) was achieved in 65.3%. Overall, surgical resection had a good impact on patients' functional outcome (86.1% either showing an improvement or maintaining a good preoperative status). Uni- and multivariate analyses found that both age and preoperative modified McCormick independently correlated with relative outcome (coeff = −0.058, p = 0.0251; coeff = 0.597, p < 0.0001) and with postoperative status (coeff = 0.058, p = 0.02507; coeff = 0.402, p = 0.00027), respectively. (4) Conclusions: Age and preoperative modified McCormick were found to be independent prognostic factors. Nevertheless, advanced age (≥75), per se, did not seem to contraindicate surgery, even in those with severe preoperative neurological deficits. The functional results sustain the need for surgical resection of SM in the elderly.

14.
J Immunother Cancer ; 10(9)2022 09.
Article de Anglais | MEDLINE | ID: mdl-36167467

RÉSUMÉ

BACKGROUND: Pediatric brain tumors are the leading cause of cancer death in children with an urgent need for innovative therapies. Glypican 2 (GPC2) is a cell surface oncoprotein expressed in neuroblastoma for which targeted immunotherapies have been developed. This work aimed to characterize GPC2 expression in pediatric brain tumors and develop an mRNA CAR T cell approach against this target. METHODS: We investigated GPC2 expression across a cohort of primary pediatric brain tumor samples and cell lines using RNA sequencing, immunohistochemistry, and flow cytometry. To target GPC2 in the brain with adoptive cellular therapies and mitigate potential inflammatory neurotoxicity, we used optimized mRNA to create transient chimeric antigen receptor (CAR) T cells. We developed four mRNA CAR T cell constructs using the highly GPC2-specific fully human D3 single chain variable fragment for preclinical testing. RESULTS: We identified high GPC2 expression across multiple pediatric brain tumor types including medulloblastomas, embryonal tumors with multilayered rosettes, other central nervous system embryonal tumors, as well as definable subsets of highly malignant gliomas. We next validated and prioritized CAR configurations using in vitro cytotoxicity assays with GPC2-expressing neuroblastoma cells, where the light-to-heavy single chain variable fragment configurations proved to be superior. We expanded the testing of the two most potent GPC2-directed CAR constructs to GPC2-expressing medulloblastoma and high-grade glioma cell lines, showing significant GPC2-specific cell death in multiple models. Finally, biweekly locoregional delivery of 2-4 million GPC2-directed mRNA CAR T cells induced significant tumor regression in an orthotopic medulloblastoma model and significantly prolonged survival in an aggressive orthotopic thalamic diffuse midline glioma xenograft model. No GPC2-directed CAR T cell related neurologic or systemic toxicity was observed. CONCLUSION: Taken together, these data show that GPC2 is a highly differentially expressed cell surface protein on multiple malignant pediatric brain tumors that can be targeted safely with local delivery of mRNA CAR T cells, laying the framework for the clinical translation of GPC2-directed immunotherapies for pediatric brain tumors.


Sujet(s)
Tumeurs du cerveau , Tumeurs du cervelet , Gliome , Médulloblastome , Neuroblastome , Récepteurs chimériques pour l'antigène , Anticorps à chaîne unique , Tumeurs du cerveau/génétique , Tumeurs du cerveau/thérapie , Lignée cellulaire tumorale , Enfant , Gliome/génétique , Gliome/thérapie , Glypicanes/génétique , Humains , Neuroblastome/anatomopathologie , Protéines oncogènes , ARN messager/génétique , Tests d'activité antitumorale sur modèle de xénogreffe
15.
Acta Neuropathol ; 144(2): 339-352, 2022 08.
Article de Anglais | MEDLINE | ID: mdl-35771282

RÉSUMÉ

Medulloblastomas (MB) molecularly designated as Group 3 (Grp 3) MB represent a more clinically aggressive tumor variant which, as a group, displays heterogeneous molecular characteristics and disease outcomes. Reliable risk stratification of Grp 3 MB would allow for appropriate assignment of patients to aggressive treatment protocols and, vice versa, for sparing adverse effects of high-dose radio-chemotherapy in patients with standard or low-risk tumors. Here we performed RNA-based analysis on an international cohort of 179 molecularly designated Grp 3 MB treated with HIT protocols. We analyzed the clinical significance of differentially expressed genes, thereby developing optimal prognostic subdivision of this MB molecular group. We compared the transcriptome profiles of two Grp 3 MB subsets with various outcomes (76 died within the first 60 months vs. 103 survived this period) and identified 224 differentially expressed genes (DEG) between these two clinical groups (Limma R algorithm, adjusted p-value < 0.05). We selected the top six DEG overexpressed in the unfavorable cohort for further survival analysis and found that expression of all six genes strongly correlated with poor outcomes. However, only high expression of KIRREL2 was identified as an independent molecular prognostic indicator of poor patients' survival. Based on clinical and molecular patterns, four risk categories were outlined for Grp 3 MB patients: i. low-risk: M0-1/MYC non-amplified/KIRREL2 low (n = 48; 5-year OS-95%); ii. standard-risk: M0-1/MYC non-amplified/KIRREL2 high or M2-3/MYC non-amplified/KIRREL2 low (n = 65; 5-year OS-70%); iii. high-risk: M2-3/MYC non-amplified/KIRREL2 high (n = 36; 5-year OS-30%); iv. very high risk-all MYC amplified tumors (n = 30; 5-year OS-0%). Cross-validated survival models incorporating KIRREL2 expression with clinical features allowed for the reclassification of up to 50% of Grp 3 MB patients into a more appropriate risk category. Finally, KIRREL2 immunopositivity was also identified as a predictive indicator of Grp 3 MB poor survival, thus suggesting its application as a possible prognostic marker in routine clinical settings. Our results indicate that integration of KIRREL2 expression in risk stratification models may improve Grp 3 MB outcome prediction. Therefore, simple gene and/or protein expression analyses for this molecular marker could be easily adopted for Grp 3 MB prognostication and may help in assigning patients to optimal therapeutic approaches in prospective clinical trials.


Sujet(s)
Tumeurs du cervelet , Médulloblastome , Tumeurs du cervelet/génétique , Analyse de profil d'expression de gènes , Humains , Médulloblastome/anatomopathologie , Analyse sur microréseau , Pronostic , Études prospectives
16.
Nat Med ; 28(2): 333-344, 2022 02.
Article de Anglais | MEDLINE | ID: mdl-35027753

RÉSUMÉ

The disialoganglioside GD2 is overexpressed on several solid tumors, and monoclonal antibodies targeting GD2 have substantially improved outcomes for children with high-risk neuroblastoma. However, approximately 40% of patients with neuroblastoma still relapse, and anti-GD2 has not mediated significant clinical activity in any other GD2+ malignancy. Macrophages are important mediators of anti-tumor immunity, but tumors resist macrophage phagocytosis through expression of the checkpoint molecule CD47, a so-called 'Don't eat me' signal. In this study, we establish potent synergy for the combination of anti-GD2 and anti-CD47 in syngeneic and xenograft mouse models of neuroblastoma, where the combination eradicates tumors, as well as osteosarcoma and small-cell lung cancer, where the combination significantly reduces tumor burden and extends survival. This synergy is driven by two GD2-specific factors that reorient the balance of macrophage activity. Ligation of GD2 on tumor cells (a) causes upregulation of surface calreticulin, a pro-phagocytic 'Eat me' signal that primes cells for removal and (b) interrupts the interaction of GD2 with its newly identified ligand, the inhibitory immunoreceptor Siglec-7. This work credentials the combination of anti-GD2 and anti-CD47 for clinical translation and suggests that CD47 blockade will be most efficacious in combination with monoclonal antibodies that alter additional pro- and anti-phagocytic signals within the tumor microenvironment.


Sujet(s)
Tumeurs osseuses , Antigènes CD47 , Animaux , Lignée cellulaire tumorale , Humains , Immunothérapie , Souris , Récidive tumorale locale , Phagocytose , Microenvironnement tumoral
17.
Cancer Cell ; 40(1): 53-69.e9, 2022 01 10.
Article de Anglais | MEDLINE | ID: mdl-34971569

RÉSUMÉ

Pediatric cancers often mimic fetal tissues and express proteins normally silenced postnatally that could serve as immune targets. We developed T cells expressing chimeric antigen receptors (CARs) targeting glypican-2 (GPC2), a fetal antigen expressed on neuroblastoma (NB) and several other solid tumors. CARs engineered using standard designs control NBs with transgenic GPC2 overexpression, but not those expressing clinically relevant GPC2 site density (∼5,000 molecules/cell, range 1-6 × 103). Iterative engineering of transmembrane (TM) and co-stimulatory domains plus overexpression of c-Jun lowered the GPC2-CAR antigen density threshold, enabling potent and durable eradication of NBs expressing clinically relevant GPC2 antigen density, without toxicity. These studies highlight the critical interplay between CAR design and antigen density threshold, demonstrate potent efficacy and safety of a lead GPC2-CAR candidate suitable for clinical testing, and credential oncofetal antigens as a promising class of targets for CAR T cell therapy of solid tumors.


Sujet(s)
Glypicanes/immunologie , Immunothérapie adoptive , Neuroblastome/traitement médicamenteux , Récepteurs aux antigènes des cellules T/métabolisme , Animaux , Lignée cellulaire tumorale , Glypicanes/métabolisme , Humains , Immunothérapie/méthodes , Neuroblastome/anatomopathologie , Récepteurs aux antigènes des cellules T/immunologie , Récepteurs chimériques pour l'antigène/immunologie , Lymphocytes T/effets des médicaments et des substances chimiques , Lymphocytes T/immunologie , Tests d'activité antitumorale sur modèle de xénogreffe/méthodes
18.
Clin Cancer Res ; 28(1): 116-128, 2022 01 01.
Article de Anglais | MEDLINE | ID: mdl-34702771

RÉSUMÉ

PURPOSE: International consensus and the 2021 WHO classification recognize eight molecular subgroups among non-WNT/non-SHH (Group 3/4) medulloblastoma, representing approximately 60% of tumors. However, very few clinical centers worldwide possess the technical capabilities to determine DNA methylation profiles or other molecular parameters of high risk for group 3/4 tumors. As a result, biomarker-driven risk stratification and therapy assignment constitutes a major challenge in medulloblastoma research. Here, we identify an IHC marker as a clinically tractable method for improved medulloblastoma risk stratification. EXPERIMENTAL DESIGN: We bioinformatically analyzed published medulloblastoma transcriptomes and proteomes identifying as a potential biomarker TPD52, whose IHC prognostic value was validated across three group 3/4 medulloblastoma clinical cohorts (n = 387) treated with conventional therapies. RESULTS: TPD52 IHC positivity represented a significant independent predictor of early relapse and death for group 3/4 medulloblastoma [HRs between 3.67 and 26.7; 95% confidence interval (CI) between 1.00 and 706.23; P = 0.05, 0.017, and 0.0058]. Cross-validated survival models incorporating TPD52 IHC with clinical features outperformed existing state-of-the-art risk stratification schemes, and reclassified approximately 50% of patients into more appropriate risk categories. Finally, TPD52 immunopositivity was a predictive indicator of poor response to chemotherapy [HR, 12.66; 95% CI, 3.53-45.40; P < 0.0001], suggesting important implication for therapeutic choices. CONCLUSIONS: This study redefines the approach to risk stratification in group 3/4 medulloblastoma in global practice. Because integration of TPD52 IHC in classification algorithms significantly improved outcome prediction, this test could be rapidly adopted for risk stratification on a global scale, independently of advanced but technically challenging molecular profiling techniques.


Sujet(s)
Tumeurs du cervelet , Médulloblastome , Marqueurs biologiques tumoraux/génétique , Tumeurs du cervelet/diagnostic , Tumeurs du cervelet/génétique , Tumeurs du cervelet/thérapie , Humains , Immunohistochimie , Médulloblastome/diagnostic , Médulloblastome/génétique , Médulloblastome/thérapie , Protéines tumorales , Pronostic , Facteurs de transcription
19.
Acta Neuropathol Commun ; 9(1): 105, 2021 06 06.
Article de Anglais | MEDLINE | ID: mdl-34092244

RÉSUMÉ

Circumstantial evidence points to a pathological role of alpha-synuclein (aSyn; gene symbol SNCA), conferred by aSyn misfolding and aggregation, in Parkinson disease (PD) and related synucleinopathies. Several findings in experimental models implicate perturbations in the tissue homeostatic mechanisms triggered by pathological aSyn accumulation, including impaired redox homeostasis, as significant contributors in the pathogenesis of PD. The nuclear factor erythroid 2-related factor (NRF2/Nrf2) is recognized as 'the master regulator of cellular anti-oxidant response', both under physiological as well as in pathological conditions. Using immunohistochemical analyses, we show a robust nuclear NRF2 accumulation in post-mortem PD midbrain, detected by NRF2 phosphorylation on the serine residue 40 (nuclear active p-NRF2, S40). Curated gene expression analyses of four independent publicly available microarray datasets revealed considerable alterations in NRF2-responsive genes in the disease affected regions in PD, including substantia nigra, dorsal motor nucleus of vagus, locus coeruleus and globus pallidus. To further examine the putative role of pathological aSyn accumulation on nuclear NRF2 response, we employed a transgenic mouse model of synucleionopathy (M83 line, expressing the mutant human A53T aSyn), which manifests widespread aSyn pathology (phosphorylated aSyn; S129) in the nervous system following intramuscular inoculation of exogenous fibrillar aSyn. We observed strong immunodetection of nuclear NRF2 in neuronal populations harboring p-aSyn (S129), and found an aberrant anti-oxidant and inflammatory gene response in the affected neuraxis. Taken together, our data support the notion that pathological aSyn accumulation impairs the redox homeostasis in nervous system, and boosting neuronal anti-oxidant response is potentially a promising approach to mitigate neurodegeneration in PD and related diseases.


Sujet(s)
Encéphale/anatomopathologie , Facteur-2 apparenté à NF-E2/métabolisme , Maladie de Parkinson/anatomopathologie , alpha-Synucléine/métabolisme , Animaux , Encéphale/métabolisme , Homéostasie/immunologie , Humains , Souris , Souris transgéniques , Maladies neuro-inflammatoires/étiologie , Maladies neuro-inflammatoires/métabolisme , Maladies neuro-inflammatoires/anatomopathologie , Oxydoréduction , Maladie de Parkinson/métabolisme
20.
Cancer Discov ; 11(11): 2884-2903, 2021 11.
Article de Anglais | MEDLINE | ID: mdl-34021002

RÉSUMÉ

Cancer cells must overcome anoikis (detachment-induced death) to successfully metastasize. Using proteomic screens, we found that distinct oncoproteins upregulate IL1 receptor accessory protein (IL1RAP) to suppress anoikis. IL1RAP is directly induced by oncogenic fusions of Ewing sarcoma, a highly metastatic childhood sarcoma. IL1RAP inactivation triggers anoikis and impedes metastatic dissemination of Ewing sarcoma cells. Mechanistically, IL1RAP binds the cell-surface system Xc - transporter to enhance exogenous cystine uptake, thereby replenishing cysteine and the glutathione antioxidant. Under cystine depletion, IL1RAP induces cystathionine gamma lyase (CTH) to activate the transsulfuration pathway for de novo cysteine synthesis. Therefore, IL1RAP maintains cyst(e)ine and glutathione pools, which are vital for redox homeostasis and anoikis resistance. IL1RAP is minimally expressed in pediatric and adult normal tissues, and human anti-IL1RAP antibodies induce potent antibody-dependent cellular cytotoxicity of Ewing sarcoma cells. Therefore, we define IL1RAP as a new cell-surface target in Ewing sarcoma, which is potentially exploitable for immunotherapy. SIGNIFICANCE: Here, we identify cell-surface protein IL1RAP as a key driver of metastasis in Ewing sarcoma, a highly aggressive childhood sarcoma. Minimal expression in pediatric and adult normal tissues nominates IL1RAP as a promising target for immunotherapy.See related commentary by Yoon and DeNicola, p. 2679.This article is highlighted in the In This Issue feature, p. 2659.


Sujet(s)
Anoïkis , Protéine accessoire du récepteur à l'interleukine-1 , Sarcome d'Ewing , Adulte , Lignée cellulaire tumorale , Enfant , Humains , Protéomique , Récepteurs à l'interleukine-1 , Sarcome d'Ewing/génétique , Sarcome d'Ewing/métabolisme , Sarcome d'Ewing/anatomopathologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE