Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Biochemistry ; 63(6): 815-826, 2024 03 19.
Article de Anglais | MEDLINE | ID: mdl-38349279

RÉSUMÉ

Membrane fusion is a crucial mechanism in a wide variety of important events in cell biology from viral infection to exocytosis. However, despite many efforts and much progress, cell-cell fusion has remained elusive to our understanding. Along the life of the fusion pore, large conformational changes take place from the initial lipid bilayer bending, passing through the hemifusion intermediates, and ending with the formation of the first nascent fusion pore. In this sense, computer simulations are an ideal technique for describing such complex lipid remodeling at the molecular level. In this work, we studied the role played by the muscle-specific membrane protein Myomerger during the formation of the fusion pore. We have conducted µs length atomistic and coarse-grained molecular dynamics, together with free-energy calculations using ad hoc collective variables. Our results show that Myomerger favors the hemifusion diaphragm-stalk transition, reduces the nucleation-expansion energy difference, and promotes the formation of nonenlarging fusion pores.


Sujet(s)
Double couche lipidique , Fusion membranaire , Double couche lipidique/métabolisme , Fusion membranaire/physiologie , Membranes/métabolisme , Simulation de dynamique moléculaire , Protéines membranaires/métabolisme , Protéines du muscle/métabolisme
2.
Mol Ther Nucleic Acids ; 33: 698-712, 2023 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-37662970

RÉSUMÉ

Despite improvements in B cell acute lymphoblastic leukemia (B-ALL) treatment, a significant number of patients experience relapse of the disease, resulting in poor prognosis and high mortality. One of the drawbacks of current B-ALL treatments is the high toxicity associated with the non-specificity of chemotherapeutic drugs. Targeted therapy is an appealing strategy to treat B-ALL to mitigate these toxic off-target effects. One such target is the B cell surface protein CD22. The restricted expression of CD22 on the B-cell lineage and its ligand-induced internalizing properties make it an attractive target in cases of B cell malignancies. To target B-ALL and the CD22 protein, we performed cell internalization SELEX (Systematic Evolution of Ligands by EXponential enrichment) followed by molecular docking to identify internalizing aptamers specific for B-ALL cells that bind the CD22 cell-surface receptor. We identified two RNA aptamers, B-ALL1 and B-ALL2, that target human malignant B cells, with B-ALL1 the first documented RNA aptamer interacting with the CD22 antigen. These B-ALL-specific aptamers represent an important first step toward developing novel targeted therapies for B cell malignancy treatments.

3.
Front Cell Dev Biol ; 11: 1125988, 2023.
Article de Anglais | MEDLINE | ID: mdl-37287458

RÉSUMÉ

The sperm acrosome is a large dense-core granule whose contents are secreted by regulated exocytosis at fertilization through the opening of numerous fusion pores between the acrosomal and plasma membranes. In other cells, the nascent pore generated when the membrane surrounding a secretory vesicle fuses with the plasma membrane may have different fates. In sperm, pore dilation leads to the vesiculation and release of these membranes, together with the granule contents. α-Synuclein is a small cytosolic protein claimed to exhibit different roles in exocytic pathways in neurons and neuroendocrine cells. Here, we scrutinized its function in human sperm. Western blot revealed the presence of α-synuclein and indirect immunofluorescence its localization to the acrosomal domain of human sperm. Despite its small size, the protein was retained following permeabilization of the plasma membrane with streptolysin O. α-Synuclein was required for acrosomal release, as demonstrated by the inability of an inducer to elicit exocytosis when permeabilized human sperm were loaded with inhibitory antibodies to human α-synuclein. The antibodies halted calcium-induced secretion when introduced after the acrosome docked to the cell membrane. Two functional assays, fluorescence and transmission electron microscopies revealed that the stabilization of open fusion pores was responsible for the secretion blockage. Interestingly, synaptobrevin was insensitive to neurotoxin cleavage at this point, an indication of its engagement in cis SNARE complexes. The very existence of such complexes during AE reflects a new paradigm. Recombinant α-synuclein rescued the inhibitory effects of the anti-α-synuclein antibodies and of a chimeric Rab3A-22A protein that also inhibits AE after fusion pore opening. We applied restrained molecular dynamics simulations to compare the energy cost of expanding a nascent fusion pore between two model membranes and found it higher in the absence than in the presence of α-synuclein. Hence, our results suggest that α-synuclein is essential for expanding fusion pores.

4.
ACS Chem Neurosci ; 14(11): 2049-2059, 2023 06 07.
Article de Anglais | MEDLINE | ID: mdl-37192400

RÉSUMÉ

Today, it is widely accepted that intrinsic disorder is strongly related to the cell cycle, during mitosis, differentiation, and apoptosis. Of particular interest are hybrid proteins possessing both structured and unstructured domains that are critical in human health and disease, such as α-synuclein. In this work, we describe how α-synuclein interacts with the nascent fusion pore as it evolves toward expansion. We unveil the key role played by its intrinsically disordered region as a thermodynamic regulator of the nucleation-expansion energy barrier. By analyzing a truncated variant of α-synuclein that lacks the disordered region, we find that the landscape of protein interactions with PIP2 and POPS lipids is highly altered, ultimately increasing the energy cost for the fusion pore to transit from nucleation to expansion. We conclude that the intrinsically disordered region in full-length α-synuclein recognizes and allocates pivotal protein:lipid interactions during membrane remodeling in the first stages of the fusion pore.


Sujet(s)
alpha-Synucléine , Humains , alpha-Synucléine/métabolisme , Thermodynamique
5.
J Chem Theory Comput ; 18(7): 4544-4554, 2022 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-35759758

RÉSUMÉ

The fusion pore controls the release of exocytotic vesicle contents through a precise orchestration of lipids from the fusing membranes and proteins. There is a major lipid reorganization during the different stages in life of the fusion pore (membrane fusion, nucleation, and expansion) that can be scrutinized thermodynamically. In this work, using umbrella sampling simulations we describe the expansion of the fusion pore. We have calculated free energy profiles to drive a nascent, just nucleated, fusion pore to its expanded configuration. We have quantified the effects on the free energy of one and two Synaptotagmin-1 C2B domains in the cytosolic space. We show that C2B domains cumulatively reduce the cost for expansion, favoring the system to evolve toward full fusion. Finally, by conducting thousands of unbiased molecular dynamics simulations, we show that C2B domains significantly decrease the probability of kiss-and-run events.


Sujet(s)
Calcium , Exocytose , Calcium/métabolisme , Fusion membranaire
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE