Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 322
Filtrer
1.
Cardiovasc Diabetol ; 23(1): 257, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39026226

RÉSUMÉ

BACKGROUND: Diabetes mellitus (DM) and Lp(a) are well-established predictors of coronary artery disease (CAD) outcomes. However, their combined association remains poorly understood. OBJECTIVE: To investigate the relationship between elevated Lp(a) and DM with CAD outcomes. METHODS: Retrospective analysis of the MGB Lp(a) Registry involving patients ≥ 18 years who underwent Lp(a) measurements between 2000 and 2019. Exclusion criteria were severe kidney dysfunction, malignant neoplasms, and prior atherosclerotic cardiovascular disease (ASCVD). The primary outcome was a combination of cardiovascular death or myocardial infarction (MI). Elevated Lp(a) was defined as > 90th percentile (≥ 216 nmol/L). RESULTS: Among 6,238 patients who met the eligibility criteria, the median age was 54, 45% were women, and 12% had DM. Patients with DM were older, more frequently male, and had a higher prevalence of additional cardiovascular risk factors. Over a median follow-up of 12.9 years, patients with either DM or elevated Lp(a) experienced higher rates of the primary outcome. Notably, those with elevated Lp(a) had a higher incidence of the primary outcome regardless of their DM status. The annual event rates were as follows: No-DM and Lp(a) < 90th% - 0.6%; No-DM and Lp(a) > 90th% - 1.3%; DM and Lp(a) < 90th% - 1.9%; DM and Lp(a) > 90th% - 4.7% (p < 0.001). After adjusting for confounders, elevated Lp(a) remained independently associated with the primary outcome among both patients with DM (HR = 2.66 [95%CI: 1.55-4.58], p < 0.001) and those without DM (HR = 2.01 [95%CI: 1.48-2.74], p < 0.001). CONCLUSIONS: Elevated Lp(a) constitutes an independent and incremental risk factor for CAD outcomes in patients with and without DM.


Sujet(s)
Marqueurs biologiques , Maladie des artères coronaires , Diabète , Facteurs de risque de maladie cardiaque , Lipoprotéine (a) , Enregistrements , Humains , Mâle , Femelle , Lipoprotéine (a)/sang , Adulte d'âge moyen , Études rétrospectives , Appréciation des risques , Diabète/épidémiologie , Diabète/diagnostic , Diabète/sang , Sujet âgé , Marqueurs biologiques/sang , Maladie des artères coronaires/sang , Maladie des artères coronaires/épidémiologie , Maladie des artères coronaires/diagnostic , Maladie des artères coronaires/mortalité , Adulte , Facteurs temps , Pronostic , Incidence , Régulation positive , Prévalence , Infarctus du myocarde/épidémiologie , Infarctus du myocarde/sang , Infarctus du myocarde/diagnostic , Infarctus du myocarde/mortalité
2.
Article de Anglais | MEDLINE | ID: mdl-39001736

RÉSUMÉ

BACKGROUND: In systemic light-chain (AL) amyloidosis, cardiac involvement portends poor outcomes. OBJECTIVES: The authors' objectives were to detect early myocardial alterations, to analyze longitudinal changes with therapy, and to predict major adverse cardiac events (MACE) in participants with AL amyloidosis using cardiac magnetic resonance imaging (MRI). METHODS: Recently diagnosed participants were prospectively enrolled. AL amyloidosis with and without cardiomyopathy (AL-CMP, AL-non-CMP) were defined based on abnormal cardiac biomarkers and wall thickness. MRI was performed at baseline, 6 months in all participants, and 12 months in participants with AL-CMP. MACE were defined as all-cause death, heart failure hospitalization, and cardiac transplantation. Mayo stage was based on troponin T, N-terminal pro-B-type natriuretic peptide, and difference in free light chains. RESULTS: This study included 80 participants (median age 62 years, 58% men). Extracellular volume (ECV) was abnormal (>32%) in all participants with AL-CMP and in 47% of those with AL-non-CMP. ECV tended to increase at 6 months (median +2%; AL-CMP P = 0.120; AL-non-CMP P = 0.018) and returned to baseline values at 12 months in participants with AL-CMP. Global longitudinal strain (GLS) improved at 6 months (median -0.6%; P = 0.048) and 12 months (median -1.2%; P < 0.001) in participants with AL-CMP. ECV and GLS were strongly associated with MACE (P < 0.001) and improved the prognostic value when added to Mayo stage (P ≤ 0.002). No participant with ECV ≤32% had MACE, while 74% of those with ECV >48% had MACE. CONCLUSIONS: In patients with systemic AL amyloidosis, ECV detects subclinical myocardial alterations. With therapy, ECV tends to increase at 6 months and returns to values unchanged from baseline at 12 months, whereas GLS improves at 6 and 12 months in participants with AL-CMP. ECV and GLS offer additional prognostic performance over Mayo stage. (Molecular Imaging of Primary Amyloid Cardiomyopathy [MICA]; NCT02641145).

3.
Article de Anglais | MEDLINE | ID: mdl-39001731

RÉSUMÉ

BACKGROUND: Positron emission tomography/computed tomography (PET/CT) with 18F-florbetapir, a novel amyloid-targeting radiotracer, can quantify left ventricular (LV) amyloid burden in systemic light-chain (AL) amyloidosis. However, its prognostic value is not known. OBJECTIVES: The authors' aim was to evaluate the prognostic value of LV amyloid burden quantified by 18F-florbetapir PET/CT, and to identify mechanistic pathways mediating its association with outcomes. METHODS: A total of 81 participants with newly diagnosed AL amyloidosis underwent 18F-florbetapir PET/CT imaging. Amyloid burden was quantified using 18F-florbetapir LV uptake as percent injected dose. The Mayo stage for AL amyloidosis was determined using troponin T, N-terminal pro-B-type natriuretic peptide (NT-proBNP), and free light chain levels. Major adverse cardiac events (MACE) were defined as all-cause death, heart failure hospitalization, or cardiac transplantation within 12 months. RESULTS: Among participants (median age, 61 years; 57% males), 36% experienced MACE, increasing from 7% to 63% across tertiles of LV amyloid burden (P < 0.001). LV amyloid burden was associated with MACE (HR: 1.46; 95% CI: 1.16-1.83; P = 0.001). However, this association became nonsignificant when adjusted for Mayo stage. In mediation analysis, the association between LV amyloid burden and MACE was mediated by NT-proBNP (P < 0.001), a marker of cardiomyocyte stretch and heart failure, and a component of Mayo stage. CONCLUSIONS: In this first study to link cardiac 18F-florbetapir uptake to subsequent outcomes, LV amyloid burden estimated by percent injected dose predicted MACE in AL amyloidosis. This effect was not independent of Mayo stage and was mediated primarily through NT-proBNP. These findings provide novel insights into the mechanism linking myocardial amyloid deposits to MACE.

4.
Front Cardiovasc Med ; 11: 1371810, 2024.
Article de Anglais | MEDLINE | ID: mdl-38873265

RÉSUMÉ

Background: Cardiac systolic dysfunction is a poor prognostic marker in light-chain (AL) cardiomyopathy, a primary interstitial disorder; however, its pathogenesis is poorly understood. Purpose: This study aims to analyze the effects of extracellular volume (ECV) expansion, a surrogate marker of amyloid burden on myocardial blood flow (MBF), myocardial work efficiency (MWE), and left ventricular (LV) systolic dysfunction in AL amyloidosis. Methods: Subjects with biopsy-proven AL amyloidosis were prospectively enrolled (April 2016-June 2021; Clinicaltrials.gov ID NCT02641145) and underwent cardiac magnetic resonance imaging (MRI) to quantify rest MBF by perfusion imaging, LV ejection fraction (LVEF) by cine MRI, and ECV by pre- and post-contrast T1 mapping. The MWE was estimated as external cardiac work from the stroke volume and mean arterial pressure normalized to the LV myocardial mass. Results: Rest MBF in 92 subjects (62 ± 8 years, 52 men) with AL amyloidosis averaged 0.87 ± 0.21 ml/min/g and correlated with MWE (r = 0.42; p < 0.001). Rest MBF was similarly low in subjects with sustained hematologic remission after successful AL amyloidosis therapy (n = 21), as in those with recently diagnosed AL amyloidosis. Both MBF and MWE decreased by ECV tertile (p < 0.01 for linear trends). The association of ECV with MWE comprised a direct effect (84% of the total effect; p < 0.001) on MWE from adverse interstitial remodeling assessed by ECV and an indirect effect (16% of the total effect; p < 0.001) mediated by MBF. There was a significant base-to-apex gradient of rest MBF in subjects with higher amyloid burden. Conclusions: In AL amyloidosis, both MBF and MWE decrease as cardiac amyloid burden and ECV expansion increase. Both structural and vascular changes from ECV expansion and myocardial amyloid burden appear to contribute to lower MWE.

7.
J Am Heart Assoc ; 13(10): e034493, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38761082

RÉSUMÉ

BACKGROUND: Lipoprotein (a) [Lp(a)] is a robust predictor of coronary heart disease outcomes, with targeted therapies currently under investigation. We aimed to evaluate the association of high Lp(a) with standard modifiable risk factors (SMuRFs) for incident first acute myocardial infarction (AMI). METHODS AND RESULTS: This retrospective study used the Mass General Brigham Lp(a) Registry, which included patients aged ≥18 years with an Lp(a) measurement between 2000 and 2019. Exclusion criteria were severe kidney dysfunction, malignant neoplasm, and prior known atherosclerotic cardiovascular disease. Diabetes, dyslipidemia, hypertension, and smoking were considered SMuRFs. High Lp(a) was defined as >90th percentile, and low Lp(a) was defined as <50th percentile. The primary outcome was fatal or nonfatal AMI. A combination of natural language processing algorithms, International Classification of Diseases (ICD) codes, and laboratory data was used to identify the outcome and covariates. A total of 6238 patients met the eligibility criteria. The median age was 54 (interquartile range, 43-65) years, and 45% were women. Overall, 23.7% had no SMuRFs, and 17.8% had ≥3 SMuRFs. Over a median follow-up of 8.8 (interquartile range, 4.2-12.8) years, the incidence of AMI increased gradually, with higher number of SMuRFs among patients with high (log-rank P=0.031) and low Lp(a) (log-rank P<0.001). Across all SMuRF subgroups, the incidence of AMI was significantly higher for patients with high Lp(a) versus low Lp(a). The risk of high Lp(a) was similar to having 2 SMuRFs. Following adjustment for confounders and number of SMuRFs, high Lp(a) remained significantly associated with the primary outcome (hazard ratio, 2.9 [95% CI, 2.0-4.3]; P<0.001). CONCLUSIONS: Among patients with no prior atherosclerotic cardiovascular disease, high Lp(a) is associated with significantly higher risk for first AMI regardless of the number of SMuRFs.


Sujet(s)
Facteurs de risque de maladie cardiaque , Lipoprotéine (a) , Infarctus du myocarde , Enregistrements , Humains , Femelle , Lipoprotéine (a)/sang , Mâle , Adulte d'âge moyen , Infarctus du myocarde/épidémiologie , Infarctus du myocarde/sang , Infarctus du myocarde/diagnostic , Études rétrospectives , Sujet âgé , Incidence , Adulte , Appréciation des risques/méthodes , Marqueurs biologiques/sang , Facteurs de risque
8.
Hypertension ; 81(6): 1272-1284, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38563161

RÉSUMÉ

BACKGROUND: Preeclampsia is a pregnancy-specific hypertensive disorder associated with an imbalance in circulating proangiogenic and antiangiogenic proteins. Preclinical evidence implicates microvascular dysfunction as a potential mediator of preeclampsia-associated cardiovascular risk. METHODS: Women with singleton pregnancies complicated by severe antepartum-onset preeclampsia and a comparator group with normotensive deliveries underwent cardiac positron emission tomography within 4 weeks of delivery. A control group of premenopausal, nonpostpartum women was also included. Myocardial flow reserve, myocardial blood flow, and coronary vascular resistance were compared across groups. sFlt-1 (soluble fms-like tyrosine kinase receptor-1) and PlGF (placental growth factor) were measured at imaging. RESULTS: The primary cohort included 19 women with severe preeclampsia (imaged at a mean of 15.3 days postpartum), 5 with normotensive pregnancy (mean, 14.4 days postpartum), and 13 nonpostpartum female controls. Preeclampsia was associated with lower myocardial flow reserve (ß, -0.67 [95% CI, -1.21 to -0.13]; P=0.016), lower stress myocardial blood flow (ß, -0.68 [95% CI, -1.07 to -0.29] mL/min per g; P=0.001), and higher stress coronary vascular resistance (ß, +12.4 [95% CI, 6.0 to 18.7] mm Hg/mL per min/g; P=0.001) versus nonpostpartum controls. Myocardial flow reserve and coronary vascular resistance after normotensive pregnancy were intermediate between preeclamptic and nonpostpartum groups. Following preeclampsia, myocardial flow reserve was positively associated with time following delivery (P=0.008). The sFlt-1/PlGF ratio strongly correlated with rest myocardial blood flow (r=0.71; P<0.001), independent of hemodynamics. CONCLUSIONS: In this exploratory cross-sectional study, we observed reduced coronary microvascular function in the early postpartum period following preeclampsia, suggesting that systemic microvascular dysfunction in preeclampsia involves coronary microcirculation. Further research is needed to establish interventions to mitigate the risk of preeclampsia-associated cardiovascular disease.


Sujet(s)
Circulation coronarienne , Pré-éclampsie , Récepteur-1 au facteur croissance endothéliale vasculaire , Résistance vasculaire , Humains , Femelle , Pré-éclampsie/physiopathologie , Pré-éclampsie/sang , Grossesse , Adulte , Résistance vasculaire/physiologie , Circulation coronarienne/physiologie , Récepteur-1 au facteur croissance endothéliale vasculaire/sang , Microcirculation/physiologie , Tomographie par émission de positons/méthodes , Facteur de croissance placentaire/sang , Période du postpartum , Indice de gravité de la maladie , Fraction du flux de réserve coronaire/physiologie , Vaisseaux coronaires/physiopathologie , Vaisseaux coronaires/imagerie diagnostique , Microvaisseaux/physiopathologie , Microvaisseaux/imagerie diagnostique
9.
J Nucl Cardiol ; 37: 101854, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38606610

RÉSUMÉ

BACKGROUND: Myocardial flow reserve (MFR) by positron emission tomography (PET) is a validated measure of cardiovascular risk. Elevated resting rate pressure product (RPP = heart rate x systolic blood pressure) can cause high resting myocardial blood flow (MBF), resulting in reduced MFR despite normal/near-normal peak stress MBF. When resting MBF is high, it is not known if RPP-corrected MFR (MFRcorrected) helps reclassify CV risk. We aimed to study this question in patients without obstructive coronary artery disease (CAD). METHODS: We retrospectively studied patients referred for rest/stress cardiac PET at our center from 2006 to 2020. Patients with abnormal perfusion (summed stress score >3) or prior coronary artery bypass grafting (CABG) were excluded. MFRcorrected was defined as stress MBF/corrected rest MBF where corrected rest MBF = rest MBF x 10,000/RPP. The primary outcome was major cardiovascular events (MACE): cardiovascular death or myocardial infarction. Associations of MFR and MFRcorrected with MACE were assessed using unadjusted and adjusted Cox regression. RESULTS: 3276 patients were followed for a median of 7 (IQR 3-12) years. 1685 patients (51%) had MFR <2.0, and of those 366 (22%) had an MFR ≥2.0 after RPP correction. MFR <2.0 was associated with an increased absolute risk of MACE (HR 2.24 [1.79-2.81], P < 0.0001). Among patients with MFR <2.0, the risk of MACE was not statistically different between patients with an MFRcorrected ≥2.0 compared with those with MFRcorrected <2.0 (1.9% vs 2.3% MACE/year, HR 0.84 [0.63-1.13], P = 0.26) even after adjustment for confounders (P = 0.66). CONCLUSIONS: In patients without overt obstructive CAD and MFR< 2.0, there was no significant difference in cardiovascular risk between patients with discordant (≥2.0) and concordant (<2) MFR following RPP correction. This suggests that RPP-corrected MFR may not consistently provide accurate risk stratification in patients with normal perfusion and MFR <2.0. Stress MBF and uncorrected MFR should be reported to more reliably convey cardiovascular risk beyond perfusion results.


Sujet(s)
Maladie des artères coronaires , Fraction du flux de réserve coronaire , Tomographie par émission de positons , Humains , Mâle , Femelle , Adulte d'âge moyen , Études rétrospectives , Pronostic , Sujet âgé , Maladie des artères coronaires/imagerie diagnostique , Maladie des artères coronaires/physiopathologie , Maladie des artères coronaires/complications , Imagerie de perfusion myocardique , Circulation coronarienne
13.
J Am Coll Cardiol ; 83(9): 873-886, 2024 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-38418000

RÉSUMÉ

BACKGROUND: Lipoprotein(a) [Lp(a)] is associated with an increased risk of atherosclerotic cardiovascular disease (ASCVD). However, whether the optimal Lp(a) threshold for risk assessment should differ based on baseline ASCVD status is unknown. OBJECTIVES: The purpose of this study was to assess the association between Lp(a) and major adverse cardiovascular events (MACE) among patients with and without baseline ASCVD. METHODS: We studied a retrospective cohort of patients with Lp(a) measured at 2 medical centers in Boston, Massachusetts, from 2000 to 2019. To assess the association of Lp(a) with incident MACE (nonfatal myocardial infarction [MI], nonfatal stroke, coronary revascularization, or cardiovascular mortality), Lp(a) percentile groups were generated with the reference group set at the first to 50th Lp(a) percentiles. Cox proportional hazards modeling was used to assess the association of Lp(a) percentile group with MACE. RESULTS: Overall, 16,419 individuals were analyzed with a median follow-up of 11.9 years. Among the 10,181 (62%) patients with baseline ASCVD, individuals in the 71st to 90th percentile group had a 21% increased hazard of MACE (adjusted HR: 1.21; P < 0.001), which was similar to that of individuals in the 91st to 100th group (adjusted HR: 1.26; P < 0.001). Among the 6,238 individuals without established ASCVD, there was a continuously higher hazard of MACE with increasing Lp(a), and individuals in the 91st to 100th Lp(a) percentile group had the highest relative risk with an adjusted HR of 1.93 (P < 0.001). CONCLUSIONS: In a large, contemporary U.S. cohort, elevated Lp(a) is independently associated with long-term MACE among individuals with and without baseline ASCVD. Our results suggest that the threshold for risk assessment may be different in primary vs secondary prevention cohorts.


Sujet(s)
Athérosclérose , Maladies cardiovasculaires , Humains , Lipoprotéine (a) , Maladies cardiovasculaires/étiologie , Études rétrospectives , Athérosclérose/complications , Athérosclérose/épidémiologie , Appréciation des risques , Facteurs de risque
14.
Eur Heart J Cardiovasc Imaging ; 25(5): 687-697, 2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38193678

RÉSUMÉ

AIMS: In systemic light-chain (AL) amyloidosis, quantification of right ventricular (RV) amyloid burden has been limited and the pathogenesis of RV dysfunction is poorly understood. Using 18F-florbetapir positron emission tomography/computed tomography (PET/CT), we aimed to quantify RV amyloid; correlate RV amyloid with RV structure and function; determine the independent contributions of RV, left ventricular (LV), and lung amyloid to RV function; and associate RV amyloid with major adverse cardiac events (MACE: death, heart failure hospitalization, cardiac transplantation). METHODS AND RESULTS: We prospectively enrolled 106 participants with AL amyloidosis (median age 62 years, 55% males) who underwent 18F-florbetapir PET/CT, magnetic resonance imaging, and echocardiography. 18F-florbetapir PET/CT identified RV amyloid in 63% of those with and 40% of those without cardiac involvement by conventional criteria. RV amyloid burden correlated with RV ejection fraction (EF), RV free wall longitudinal strain (FWLS), RV wall thickness, RV mass index, N-terminal pro-brain natriuretic peptide, troponin T, LV amyloid, and lung amyloid (each P < 0.001). In multivariable analysis, RV amyloid burden, but not LV or lung amyloid burden, predicted RV dysfunction (EF P = 0.014; FWLS P < 0.001). During a median follow-up of 28 months, RV amyloid burden predicted MACE (P < 0.001). CONCLUSION: This study shows for the first time that 18F-florbetapir PET/CT identifies early RV amyloid in systemic AL amyloidosis prior to alterations in RV structure and function. Increasing RV amyloid on 18F-florbetapir PET/CT is associated with worse RV structure and function, predicts RV dysfunction, and predicts MACE. These results imply a central role for RV amyloid in the pathogenesis of RV dysfunction.


Sujet(s)
Dérivés de l'aniline , Éthylène glycols , Tomographie par émission de positons couplée à la tomodensitométrie , Dysfonction ventriculaire droite , Humains , Mâle , Femelle , Adulte d'âge moyen , Tomographie par émission de positons couplée à la tomodensitométrie/méthodes , Études prospectives , Dysfonction ventriculaire droite/imagerie diagnostique , Sujet âgé , Amylose à chaine légère d'immunoglobuline/imagerie diagnostique , Amylose à chaine légère d'immunoglobuline/complications , Radiopharmaceutiques , Ventricules cardiaques/imagerie diagnostique
15.
Circ Cardiovasc Imaging ; 17(1): e015858, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-38227694

RÉSUMÉ

BACKGROUND: Advanced chronic kidney disease is associated with high cardiovascular risk, even after kidney transplant. Pretransplant cardiac testing may identify patients who require additional assessment before transplant or would benefit from risk optimization. The objective of the current study was to determine the relative prognostic utility of pretransplant positron emission tomography (PET) and single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) for posttransplant major adverse cardiovascular events (MACEs). METHODS: We retrospectively followed patients who underwent MPI before kidney transplant for the occurrence of MACE after transplant including myocardial infarction, stroke, heart failure, and cardiac death. An abnormal MPI result was defined as a total perfusion deficit >5% of the myocardium. To determine associations of MPI results with MACE, we utilized Cox hazard regression with propensity weighting for PET versus SPECT with model factors, including demographics and cardiovascular risk factors. RESULTS: A total of 393 patients underwent MPI (208 PET and 185 SPECT) and were followed for a median of 5.9 years post-transplant. Most were male (58%), median age was 58 years, and there was a high burden of hypertension (88%) and diabetes (33%). A minority had abnormal MPI (n=58, 15%). In propensity-weighted hazard regression, abnormal PET result was associated with posttransplant MACE (hazard ratio, 3.02 [95% CI, 1.78-5.11]; P<0.001), while there was insufficient evidence of an association of abnormal SPECT result with MACE (1.39 [95% CI, 0.72-2.66]; P=0.33). The explained relative risk of the PET result was higher than the SPECT result (R2 0.086 versus 0.007). Normal PET was associated with the lowest risk of MACE (2.2%/year versus 3.6%/year for normal SPECT; P<0.001). CONCLUSIONS: Kidney transplant recipients are at high cardiovascular risk, despite a minority having obstructive coronary artery disease on MPI. PET MPI findings predict posttransplant MACE. Normal PET may better discriminate lower risk patients compared with normal SPECT, which should be confirmed in a larger prospective study.


Sujet(s)
Maladie des artères coronaires , Transplantation rénale , Imagerie de perfusion myocardique , Humains , Mâle , Adulte d'âge moyen , Femelle , Études prospectives , Études rétrospectives , Transplantation rénale/effets indésirables , Imagerie de perfusion myocardique/méthodes , Tomographie par émission monophotonique/méthodes , Tomographie par émission de positons , Pronostic
16.
EBioMedicine ; 99: 104930, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38168587

RÉSUMÉ

BACKGROUND: Myocardial perfusion imaging (MPI) is one of the most common cardiac scans and is used for diagnosis of coronary artery disease and assessment of cardiovascular risk. However, the large majority of MPI patients have normal results. We evaluated whether unsupervised machine learning could identify unique phenotypes among patients with normal scans and whether those phenotypes were associated with risk of death or myocardial infarction. METHODS: Patients from a large international multicenter MPI registry (10 sites) with normal perfusion by expert visual interpretation were included in this cohort analysis. The training population included 9849 patients, and external testing population 12,528 patients. Unsupervised cluster analysis was performed, with separate training and external testing cohorts, to identify clusters, with four distinct phenotypes. We evaluated the clinical and imaging features of clusters and their associations with death or myocardial infarction. FINDINGS: Patients in Clusters 1 and 2 almost exclusively underwent exercise stress, while patients in Clusters 3 and 4 mostly required pharmacologic stress. In external testing, the risk for Cluster 4 patients (20.2% of population, unadjusted hazard ratio [HR] 6.17, 95% confidence interval [CI] 4.64-8.20) was higher than the risk associated with pharmacologic stress (HR 3.03, 95% CI 2.53-3.63), or previous myocardial infarction (HR 1.82, 95% CI 1.40-2.36). INTERPRETATION: Unsupervised learning identified four distinct phenotypes of patients with normal perfusion scans, with a significant proportion of patients at very high risk of myocardial infarction or death. Our results suggest a potential role for patient phenotyping to improve risk stratification of patients with normal imaging results. FUNDING: This work was supported by the National Heart, Lung, and Blood Institute at the National Institutes of Health [R35HL161195 to PS]. The REFINE SPECT database was supported by the National Heart, Lung, and Blood Institute at the National Institutes of Health [R01HL089765 to PS]. MCW was supported by the British Heart Foundation [FS/ICRF/20/26002].


Sujet(s)
Maladie des artères coronaires , Infarctus du myocarde , Humains , Maladie des artères coronaires/imagerie diagnostique , Infarctus du myocarde/imagerie diagnostique , Infarctus du myocarde/étiologie , Perfusion , Pronostic , Facteurs de risque , Apprentissage machine non supervisé , Études rétrospectives
19.
J Nucl Cardiol ; 31: 101779, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38215598

RÉSUMÉ

OBJECTIVES: The objective of this study was to determine the diagnostic performance of 15O-water positron emission tomography (PET) myocardial perfusion imaging to detect coronary artery disease (CAD) using the truth-standard of invasive coronary angiography (ICA) with fractional flow reserve (FFR) or instantaneous wave-Free Ratio (iFR) or coronary computed tomography angiogram (CCTA). BACKGROUND: 15O-water has a very high first-pass extraction that allows accurate quantification of myocardial blood flow and detection of flow-limiting CAD. However, the need for an on-site cyclotron and lack of automated production at the point of care and relatively complex image analysis protocol has limited its clinical use to date. METHODS: The RAPID WATER FLOW study is an open-label, multicenter, prospective investigation of the accuracy of 15O-water PET to detect obstructive angiographic and physiologically significant stenosis in patients with suspected CAD. The study will include the use of an automated system for producing, dosing, and injecting 15O-water and enrolling approximately 215 individuals with suspected CAD at approximately 10 study sites in North America and Europe. The primary endpoint of the study is the diagnostic sensitivity and specificity of the 15O-water PET study using the truth-standard of ICA with FFR or iFR to determine flow-limiting stenosis, or CCTA to rule out CAD and incorporating a quantitative analytic platform developed for the 15O-water PET acquisitions. Sensitivity and specificity are to be considered positive if the lower bound of the 95% confidence interval is superior to the threshold of 60% for both, consistent with prior registration studies. Subgroup analyses include assessments of diagnostic sensitivity, specificity, and accuracy in female, obese, and diabetic individuals, as well as in those with multivessel disease. All enrolled individuals will be followed for adverse and serious adverse events for up to 32 hours after the index PET scan. The study will have >90% power (one-sided test, α = 0.025) to test the hypothesis that sensitivity and specificity of 15O-water PET are both >60%. CONCLUSIONS: The RAPID WATER FLOW study is a prospective, multicenter study to determine the diagnostic sensitivity and specificity of 15O-water PET as compared to ICA with FFR/iFR or CCTA. This study will introduce several novel aspects to imaging registration studies, including a more relevant truth standard incorporating invasive physiologic indexes, coronary CTA to qualify normal individuals for eligibility, and a more quantitative approach to image analysis than has been done in prior pivotal studies. CLINICAL TRIAL REGISTRATION INFORMATION: Clinical-Trials.gov (#NCT05134012).


Sujet(s)
Maladie des artères coronaires , Sténose coronarienne , Fraction du flux de réserve coronaire , Imagerie de perfusion myocardique , Humains , Femelle , Études prospectives , Fraction du flux de réserve coronaire/physiologie , Sténose pathologique , Eau , Coronarographie/méthodes , Perfusion , Valeur prédictive des tests , Imagerie de perfusion myocardique/méthodes , Angiographie par tomodensitométrie/méthodes
20.
JACC Cardiovasc Imaging ; 17(2): 179-191, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37768241

RÉSUMÉ

BACKGROUND: Body mass index (BMI) is a controversial marker of cardiovascular prognosis, especially in women. Coronary microvascular dysfunction (CMD) is prevalent in obese patients and a better discriminator of risk than BMI, but its association with body composition is unknown. OBJECTIVES: The authors used a deep learning model for body composition analysis to investigate the relationship between CMD, skeletal muscle (SM), subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT), and their contribution to adverse outcomes in patients referred for evaluation of coronary artery disease. METHODS: Consecutive patients (n = 400) with normal perfusion and preserved left ventricular ejection fraction on cardiac stress positron emission tomography were followed (median, 6.0 years) for major adverse events, including death and hospitalization for myocardial infarction or heart failure. Coronary flow reserve (CFR) was quantified as stress/rest myocardial blood flow from positron emission tomography. SM, SAT, and VAT cross-sectional areas were extracted from abdominal computed tomography at the third lumbar vertebra using a validated automated algorithm. RESULTS: Median age was 63, 71% were female, 50% non-White, and 50% obese. Compared with the nonobese, patients with obesity (BMI: 30.0-68.4 kg/m2) had higher SAT, VAT, and SM, and lower CFR (all P < 0.001). In adjusted analyses, decreased SM but not increased SAT or VAT was significantly associated with CMD (CFR <2; OR: 1.38; 95% CI: 1.08-1.75 per -10 cm2/m2 SM index; P < 0.01). Both lower CFR and SM, but not higher SAT or VAT, were independently associated with adverse events (HR: 1.83; 95% CI: 1.25-2.68 per -1 U CFR and HR: 1.53; 95% CI: 1.20-1.96 per -10 cm2/m2 SM index, respectively; P < 0.002 for both), especially heart failure hospitalization (HR: 2.36; 95% CI: 1.31-4.24 per -1 U CFR and HR: 1.87; 95% CI: 1.30-2.69 per -10 cm2/m2 SM index; P < 0.004 for both). There was a significant interaction between CFR and SM (adjusted P = 0.026), such that patients with CMD and sarcopenia demonstrated the highest rate of adverse events, especially among young, female, and obese patients (all P < 0.005). CONCLUSIONS: In a predominantly female cohort of patients without flow-limiting coronary artery disease, deficient muscularity, not excess adiposity, was independently associated with CMD and future adverse outcomes, especially heart failure. In patients with suspected ischemia and no obstructive coronary artery disease, characterization of lean body mass and coronary microvascular function may help to distinguish obese phenotypes at risk for cardiovascular events.


Sujet(s)
Maladie des artères coronaires , Défaillance cardiaque , Humains , Femelle , Adulte d'âge moyen , Mâle , Maladie des artères coronaires/imagerie diagnostique , Débit systolique , Facteurs de risque , Fonction ventriculaire gauche , Valeur prédictive des tests , Défaillance cardiaque/imagerie diagnostique , Défaillance cardiaque/épidémiologie , Obésité/complications , Obésité/diagnostic , Obésité/épidémiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE