Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 43
Filtrer
1.
Nat Cell Biol ; 26(4): 593-603, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38553595

RÉSUMÉ

Loss of protein function is a driving force of ageing. We have identified peptidyl-prolyl isomerase A (PPIA or cyclophilin A) as a dominant chaperone in haematopoietic stem and progenitor cells. Depletion of PPIA accelerates stem cell ageing. We found that proteins with intrinsically disordered regions (IDRs) are frequent PPIA substrates. IDRs facilitate interactions with other proteins or nucleic acids and can trigger liquid-liquid phase separation. Over 20% of PPIA substrates are involved in the formation of supramolecular membrane-less organelles. PPIA affects regulators of stress granules (PABPC1), P-bodies (DDX6) and nucleoli (NPM1) to promote phase separation and increase cellular stress resistance. Haematopoietic stem cell ageing is associated with a post-transcriptional decrease in PPIA expression and reduced translation of IDR-rich proteins. Here we link the chaperone PPIA to the synthesis of intrinsically disordered proteins, which indicates that impaired protein interaction networks and macromolecular condensation may be potential determinants of haematopoietic stem cell ageing.


Sujet(s)
Protéines intrinsèquement désordonnées , Protéines intrinsèquement désordonnées/composition chimique , Cyclophiline A/génétique , Cyclophiline A/métabolisme , Protéines de liaison à l'ARN , Cellules souches hématopoïétiques/métabolisme
2.
Nat Cell Biol ; 25(8): 1121-1134, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37460697

RÉSUMÉ

The epigenetic mechanisms that maintain differentiated cell states remain incompletely understood. Here we employed histone mutants to uncover a crucial role for H3K36 methylation in the maintenance of cell identities across diverse developmental contexts. Focusing on the experimental induction of pluripotency, we show that H3K36M-mediated depletion of H3K36 methylation endows fibroblasts with a plastic state poised to acquire pluripotency in nearly all cells. At a cellular level, H3K36M facilitates epithelial plasticity by rendering fibroblasts insensitive to TGFß signals. At a molecular level, H3K36M enables the decommissioning of mesenchymal enhancers and the parallel activation of epithelial/stem cell enhancers. This enhancer rewiring is Tet dependent and redirects Sox2 from promiscuous somatic to pluripotency targets. Our findings reveal a previously unappreciated dual role for H3K36 methylation in the maintenance of cell identity by integrating a crucial developmental pathway into sustained expression of cell-type-specific programmes, and by opposing the expression of alternative lineage programmes through enhancer methylation.


Sujet(s)
Épigenèse génétique , Histone , Méthylation , Histone/génétique , Histone/métabolisme , Différenciation cellulaire/génétique , Fibroblastes/métabolisme , Lignage cellulaire/génétique
3.
Cell Stem Cell ; 30(4): 335-337, 2023 04 06.
Article de Anglais | MEDLINE | ID: mdl-37028396

RÉSUMÉ

Small molecule-induced cell fate transitions are characterized by low efficiency and slow kinetics. An optimized chemical reprogramming approach now facilitates the robust and rapid conversion of somatic cells to pluripotent stem cells, unlocking exciting avenues to study and manipulate human cell identity.


Sujet(s)
Cellules souches pluripotentes induites , Cellules souches pluripotentes , Humains , Reprogrammation cellulaire , Différenciation cellulaire
4.
Cell Reprogram ; 25(1): 9-10, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36594927

RÉSUMÉ

Short-term expression of Yamanaka factors early in life promotes epigenetic reprogramming and an increased healthy lifespan in a mouse model of accelerated aging.


Sujet(s)
Reprogrammation cellulaire , Longévité , Animaux , Souris , Épigenèse génétique , Rajeunissement , Vieillissement/génétique
5.
Science ; 378(6623): 983-989, 2022 12 02.
Article de Anglais | MEDLINE | ID: mdl-36454826

RÉSUMÉ

Neurons harbor high levels of single-strand DNA breaks (SSBs) that are targeted to neuronal enhancers, but the source of this endogenous damage remains unclear. Using two systems of postmitotic lineage specification-induced pluripotent stem cell-derived neurons and transdifferentiated macrophages-we show that thymidine DNA glycosylase (TDG)-driven excision of methylcytosines oxidized with ten-eleven translocation enzymes (TET) is a source of SSBs. Although macrophage differentiation favors short-patch base excision repair to fill in single-nucleotide gaps, neurons also frequently use the long-patch subpathway. Disrupting this gap-filling process using anti-neoplastic cytosine analogs triggers a DNA damage response and neuronal cell death, which is dependent on TDG. Thus, TET-mediated active DNA demethylation promotes endogenous DNA damage, a process that normally safeguards cell identity but can also provoke neurotoxicity after anticancer treatments.


Sujet(s)
Cassures simple-brin de l'ADN , Déméthylation de l'ADN , Réparation de l'ADN , Éléments activateurs (génétique) , Cellules souches pluripotentes induites , Neurones , Thymine DNA glycosylase , Différenciation cellulaire , Neurones/enzymologie , 5-Méthyl-cytosine/métabolisme , Humains , Transdifférenciation cellulaire
6.
Nat Cell Biol ; 24(9): 1326-1327, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-36075977
7.
Genes Dev ; 35(21-22): 1527-1547, 2021 11 01.
Article de Anglais | MEDLINE | ID: mdl-34711655

RÉSUMÉ

Understanding the genetic control of human embryonic stem cell function is foundational for developmental biology and regenerative medicine. Here we describe an integrated genome-scale loss- and gain-of-function screening approach to identify genetic networks governing embryonic stem cell proliferation and differentiation into the three germ layers. We identified a deep link between pluripotency maintenance and survival by showing that genetic alterations that cause pluripotency dissolution simultaneously increase apoptosis resistance. We discovered that the chromatin-modifying complex SAGA and in particular its subunit TADA2B are central regulators of pluripotency, survival, growth, and lineage specification. Joint analysis of all screens revealed that genetic alterations that broadly inhibit differentiation across multiple germ layers drive proliferation and survival under pluripotency-maintaining conditions and coincide with known cancer drivers. Our results show the power of integrated multilayer genetic screening for the robust mapping of complex genetic networks.


Sujet(s)
Cellules souches embryonnaires humaines , Différenciation cellulaire/génétique , Cellules souches embryonnaires , Mutation gain de fonction , Feuillets embryonnaires , Humains
9.
Genes Dev ; 35(17-18): 1209-1228, 2021 09 01.
Article de Anglais | MEDLINE | ID: mdl-34413137

RÉSUMÉ

The generation of myotubes from fibroblasts upon forced MyoD expression is a classic example of transcription factor-induced reprogramming. We recently discovered that additional modulation of signaling pathways with small molecules facilitates reprogramming to more primitive induced myogenic progenitor cells (iMPCs). Here, we dissected the transcriptional and epigenetic dynamics of mouse fibroblasts undergoing reprogramming to either myotubes or iMPCs using a MyoD-inducible transgenic model. Induction of MyoD in fibroblasts combined with small molecules generated Pax7+ iMPCs with high similarity to primary muscle stem cells. Analysis of intermediate stages of iMPC induction revealed that extinction of the fibroblast program preceded induction of the stem cell program. Moreover, key stem cell genes gained chromatin accessibility prior to their transcriptional activation, and these regions exhibited a marked loss of DNA methylation dependent on the Tet enzymes. In contrast, myotube generation was associated with few methylation changes, incomplete and unstable reprogramming, and an insensitivity to Tet depletion. Finally, we showed that MyoD's ability to bind to unique bHLH targets was crucial for generating iMPCs but dispensable for generating myotubes. Collectively, our analyses elucidate the role of MyoD in myogenic reprogramming and derive general principles by which transcription factors and signaling pathways cooperate to rewire cell identity.


Sujet(s)
Développement musculaire , Protéine MyoD , Animaux , Différenciation cellulaire/génétique , Souris , Développement musculaire/génétique , Fibres musculaires squelettiques , Muscles squelettiques , Protéine MyoD/génétique , Protéine MyoD/métabolisme , Myoblastes/métabolisme , Cellules souches/métabolisme
10.
Genome Biol ; 22(1): 171, 2021 06 03.
Article de Anglais | MEDLINE | ID: mdl-34082786

RÉSUMÉ

BACKGROUND: Somatic cell reprogramming is the process that allows differentiated cells to revert to a pluripotent state. In contrast to the extensively studied rewiring of epigenetic and transcriptional programs required for reprogramming, the dynamics of post-transcriptional changes and their associated regulatory mechanisms remain poorly understood. Here we study the dynamics of alternative splicing changes occurring during efficient reprogramming of mouse B cells into induced pluripotent stem (iPS) cells and compare them to those occurring during reprogramming of mouse embryonic fibroblasts. RESULTS: We observe a significant overlap between alternative splicing changes detected in the two reprogramming systems, which are generally uncoupled from changes in transcriptional levels. Correlation between gene expression of potential regulators and specific clusters of alternative splicing changes enables the identification and subsequent validation of CPSF3 and hnRNP UL1 as facilitators, and TIA1 as repressor of mouse embryonic fibroblasts reprogramming. We further find that these RNA-binding proteins control partially overlapping programs of splicing regulation, involving genes relevant for developmental and morphogenetic processes. CONCLUSIONS: Our results reveal common programs of splicing regulation during reprogramming of different cell types and identify three novel regulators of this process and their targets.


Sujet(s)
Épissage alternatif/génétique , Reprogrammation cellulaire/génétique , Facteur de spécificité de clivage et polyadénylation/métabolisme , Ribonucléoprotéines nucléaires hétérogènes/métabolisme , Antigène intracellulaire-1 des lymphocytes T/métabolisme , Animaux , Lymphocytes B/métabolisme , Protéines liant les séquences stimulatrices de type CCAAT/métabolisme , Embryon de mammifère/cytologie , Fibroblastes/métabolisme , Régulation de l'expression des gènes au cours du développement , Souris
11.
Development ; 146(23)2019 12 02.
Article de Anglais | MEDLINE | ID: mdl-31792064

RÉSUMÉ

Development and homeostasis rely upon concerted regulatory pathways to establish the specialized cell types needed for tissue function. Once a cell type is specified, the processes that restrict and maintain cell fate are equally important in ensuring tissue integrity. Over the past decade, several approaches to experimentally reprogram cell fate have emerged. Importantly, efforts to improve and understand these approaches have uncovered novel molecular determinants that reinforce lineage commitment and help resist cell fate changes. In this Review, we summarize recent studies that have provided insights into the various chromatin factors, post-transcriptional processes and features of genomic organization that safeguard cell identity in the context of reprogramming to pluripotency. We also highlight how these factors function in other experimental, physiological and pathological cell fate transitions, including direct lineage conversion, pluripotency-to-totipotency reversion and cancer.


Sujet(s)
Reprogrammation cellulaire , Chromatine/métabolisme , Protéines tumorales/métabolisme , Tumeurs/métabolisme , Cellules souches tumorales/métabolisme , Facteurs de transcription/métabolisme , Animaux , Chromatine/anatomopathologie , Humains , Tumeurs/anatomopathologie , Cellules souches tumorales/anatomopathologie
12.
Nat Cell Biol ; 21(11): 1449-1461, 2019 11.
Article de Anglais | MEDLINE | ID: mdl-31659274

RÉSUMÉ

Development and differentiation are associated with profound changes to histone modifications, yet their in vivo function remains incompletely understood. Here, we generated mouse models expressing inducible histone H3 lysine-to-methionine (K-to-M) mutants, which globally inhibit methylation at specific sites. Mice expressing H3K36M developed severe anaemia with arrested erythropoiesis, a marked haematopoietic stem cell defect, and rapid lethality. By contrast, mice expressing H3K9M survived up to a year and showed expansion of multipotent progenitors, aberrant lymphopoiesis and thrombocytosis. Additionally, some H3K9M mice succumbed to aggressive T cell leukaemia/lymphoma, while H3K36M mice exhibited differentiation defects in testis and intestine. Mechanistically, induction of either mutant reduced corresponding histone trimethylation patterns genome-wide and altered chromatin accessibility as well as gene expression landscapes. Strikingly, discontinuation of transgene expression largely restored differentiation programmes. Our work shows that individual chromatin modifications are required at several specific stages of differentiation and introduces powerful tools to interrogate their roles in vivo.


Sujet(s)
Épigenèse génétique , Histone/métabolisme , Leucémie à cellules T/génétique , Lysine/métabolisme , Méthionine/métabolisme , Tératome/génétique , Animaux , Transplantation de moelle osseuse , Lignage cellulaire/génétique , Modèles animaux de maladie humaine , Doxycycline/pharmacologie , Cellules érythroïdes/métabolisme , Cellules érythroïdes/anatomopathologie , Femelle , Granulocytes/métabolisme , Granulocytes/anatomopathologie , Histone/génétique , Leucémie à cellules T/induit chimiquement , Leucémie à cellules T/métabolisme , Leucémie à cellules T/anatomopathologie , Mâle , Méthylation , Souris , Souris transgéniques , Cellules souches embryonnaires de souris/métabolisme , Cellules souches embryonnaires de souris/anatomopathologie , Mutation , Transduction du signal , Analyse de survie , Lymphocytes T/métabolisme , Lymphocytes T/anatomopathologie , Tératome/induit chimiquement , Tératome/métabolisme , Tératome/anatomopathologie
13.
Cell Stem Cell ; 25(5): 622-638.e13, 2019 11 07.
Article de Anglais | MEDLINE | ID: mdl-31588046

RÉSUMÉ

Post-transcriptional mechanisms have the potential to influence complex changes in gene expression, yet their role in cell fate transitions remains largely unexplored. Here, we show that suppression of the RNA helicase DDX6 endows human and mouse primed embryonic stem cells (ESCs) with a differentiation-resistant, "hyper-pluripotent" state, which readily reprograms to a naive state resembling the preimplantation embryo. We further demonstrate that DDX6 plays a key role in adult progenitors where it controls the balance between self-renewal and differentiation in a context-dependent manner. Mechanistically, DDX6 mediates the translational suppression of target mRNAs in P-bodies. Upon loss of DDX6 activity, P-bodies dissolve and release mRNAs encoding fate-instructive transcription and chromatin factors that re-enter the ribosome pool. Increased translation of these targets impacts cell fate by rewiring the enhancer, heterochromatin, and DNA methylation landscapes of undifferentiated cell types. Collectively, our data establish a link between P-body homeostasis, chromatin organization, and stem cell potency.


Sujet(s)
Différenciation cellulaire/génétique , Plasticité cellulaire/génétique , DEAD-box RNA helicases/métabolisme , Cellules souches pluripotentes induites/métabolisme , Protéines proto-oncogènes/métabolisme , Ribonucléoprotéines/métabolisme , Animaux , Lignée cellulaire , Assemblage et désassemblage de la chromatine/génétique , DEAD-box RNA helicases/génétique , Méthylation de l'ADN , Cellules souches embryonnaires/cytologie , Cellules souches embryonnaires/métabolisme , Régulation de l'expression des gènes/génétique , Gene Ontology , Homéostasie/génétique , Humains , Cellules souches pluripotentes induites/cytologie , Cellules souches pluripotentes induites/enzymologie , Jumonji Domain-Containing Histone Demethylases/génétique , Jumonji Domain-Containing Histone Demethylases/métabolisme , Souris , Souris de lignée C57BL , Protéine homéotique Nanog/métabolisme , Organoïdes/cytologie , Organoïdes/imagerie diagnostique , Organoïdes/métabolisme , Biosynthèse des protéines/génétique , Protéines/métabolisme , Protéines proto-oncogènes/génétique , ARN messager/métabolisme , RNA-Seq , Ribonucléoprotéines/génétique , Ribosomes/métabolisme
14.
Nat Cell Biol ; 21(7): 824-834, 2019 07.
Article de Anglais | MEDLINE | ID: mdl-31235934

RÉSUMÉ

How pluripotent stem cells differentiate into the main germ layers is a key question of developmental biology. Here, we show that the chromatin-related factor Whsc1 (also known as Nsd2 and MMSET) has a dual role in pluripotency exit and germ layer specification of embryonic stem cells. On induction of differentiation, a proportion of Whsc1-depleted embryonic stem cells remain entrapped in a pluripotent state and fail to form mesendoderm, although they are still capable of generating neuroectoderm. These functions of Whsc1 are independent of its methyltransferase activity. Whsc1 binds to enhancers of the mesendodermal regulators Gata4, T (Brachyury), Gata6 and Foxa2, together with Brd4, and activates the expression of these genes. Depleting each of these regulators also delays pluripotency exit, suggesting that they mediate the effects observed with Whsc1. Our data indicate that Whsc1 links silencing of the pluripotency regulatory network with activation of mesendoderm lineages.


Sujet(s)
Différenciation cellulaire/physiologie , Endoderme/cytologie , Histone-lysine N-methyltransferase/métabolisme , Cellules souches pluripotentes/cytologie , Animaux , Différenciation cellulaire/génétique , Lignage cellulaire , Cellules souches embryonnaires/cytologie , Feuillets embryonnaires/cytologie , Souris , Plaque neurale/cytologie , Protéines nucléaires/métabolisme , Facteurs de transcription/métabolisme
15.
Elife ; 82019 03 12.
Article de Anglais | MEDLINE | ID: mdl-30860479

RÉSUMÉ

Forced transcription factor expression can transdifferentiate somatic cells into other specialised cell types or reprogram them into induced pluripotent stem cells (iPSCs) with variable efficiency. To better understand the heterogeneity of these processes, we used single-cell RNA sequencing to follow the transdifferentation of murine pre-B cells into macrophages as well as their reprogramming into iPSCs. Even in these highly efficient systems, there was substantial variation in the speed and path of fate conversion. We predicted and validated that these differences are inversely coupled and arise in the starting cell population, with Mychigh large pre-BII cells transdifferentiating slowly but reprogramming efficiently and Myclow small pre-BII cells transdifferentiating rapidly but failing to reprogram. Strikingly, differences in Myc activity predict the efficiency of reprogramming across a wide range of somatic cell types. These results illustrate how single cell expression and computational analyses can identify the origins of heterogeneity in cell fate conversion processes.


Sujet(s)
Lignage cellulaire , Transdifférenciation cellulaire , Reprogrammation cellulaire , Cellules souches pluripotentes induites/cytologie , Précurseurs lymphoïdes B/cytologie , Animaux , Souris , Souris de lignée C57BL , Souris knockout , Souris transgéniques , RNA-Seq , Transduction du signal , Analyse sur cellule unique , Transcriptome
17.
Trends Cell Biol ; 28(12): 971-973, 2018 12.
Article de Anglais | MEDLINE | ID: mdl-30463679

RÉSUMÉ

Cell fate transitions involve rapid changes in gene expression patterns, yet the role of post-translational modifications in these processes remains underexplored. A recent study identifies SUMOylation as a guardian of cell identity that acts during differentiation and reprogramming by reinforcing active enhancers and maintaining silenced heterochromatin in a context-specific manner.


Sujet(s)
Chromatine , Sumoylation , Différenciation cellulaire , Plasticité cellulaire , Maturation post-traductionnelle des protéines
18.
Cell Stem Cell ; 23(5): 727-741.e9, 2018 11 01.
Article de Anglais | MEDLINE | ID: mdl-30220521

RÉSUMÉ

Here, we report DNA methylation and hydroxymethylation dynamics at nucleotide resolution using C/EBPα-enhanced reprogramming of B cells into induced pluripotent cells (iPSCs). We observed successive waves of hydroxymethylation at enhancers, concomitant with a decrease in DNA methylation, suggesting active demethylation. Consistent with this finding, ablation of the DNA demethylase Tet2 almost completely abolishes reprogramming. C/EBPα, Klf4, and Tfcp2l1 each interact with Tet2 and recruit the enzyme to specific DNA sites. During reprogramming, some of these sites maintain high levels of 5hmC, and enhancers and promoters of key pluripotency factors become demethylated as early as 1 day after Yamanaka factor induction. Surprisingly, methylation changes precede chromatin opening in distinct chromatin regions, including Klf4 bound sites, revealing a pioneer factor activity associated with alternation in DNA methylation. Rapid changes in hydroxymethylation similar to those in B cells were also observed during compound-accelerated reprogramming of fibroblasts into iPSCs, highlighting the generality of our observations.


Sujet(s)
Reprogrammation cellulaire/génétique , Méthylation de l'ADN , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Éléments activateurs (génétique)/génétique , Cellules souches pluripotentes induites/cytologie , Protéines proto-oncogènes/génétique , Protéines proto-oncogènes/métabolisme , Facteurs de transcription/métabolisme , Animaux , Cellules cultivées , Dioxygenases , Femelle , Fibroblastes/cytologie , Fibroblastes/métabolisme , Cellules souches pluripotentes induites/métabolisme , Facteur-4 de type Kruppel , Mâle , Souris , Souris knockout
19.
Nat Methods ; 15(9): 732-740, 2018 09.
Article de Anglais | MEDLINE | ID: mdl-30127506

RÉSUMÉ

Human embryonic stem cells (hESCs) can be captured in a primed state in which they resemble the postimplantation epiblast, or in a naive state where they resemble the preimplantation epiblast. Naive-cell-specific culture conditions allow the study of preimplantation development ex vivo but reportedly lead to chromosomal abnormalities, which compromises their utility in research and potential therapeutic applications. Although MEK inhibition is essential for the naive state, here we show that reduced MEK inhibition facilitated the establishment and maintenance of naive hESCs that retained naive-cell-specific features, including global DNA hypomethylation, HERVK expression, and two active X chromosomes. We further show that hESCs cultured under these modified conditions proliferated more rapidly; accrued fewer chromosomal abnormalities; and displayed changes in the phosphorylation levels of MAPK components, regulators of DNA damage/repair, and cell cycle. We thus provide a simple modification to current methods that can enable robust growth and reduced genomic instability in naive hESCs.


Sujet(s)
Cellules souches embryonnaires/métabolisme , Instabilité du génome , MAP Kinase Kinase Kinases/antagonistes et inhibiteurs , Inhibiteurs de protéines kinases/pharmacologie , Méthylation de l'ADN , Cellules souches embryonnaires/enzymologie , Humains , Protéome , Transcriptome
20.
Stem Cell Reports ; 10(5): 1505-1521, 2018 05 08.
Article de Anglais | MEDLINE | ID: mdl-29742392

RÉSUMÉ

Skeletal muscle harbors quiescent stem cells termed satellite cells and proliferative progenitors termed myoblasts, which play pivotal roles during muscle regeneration. However, current technology does not allow permanent capture of these cell populations in vitro. Here, we show that ectopic expression of the myogenic transcription factor MyoD, combined with exposure to small molecules, reprograms mouse fibroblasts into expandable induced myogenic progenitor cells (iMPCs). iMPCs express key skeletal muscle stem and progenitor cell markers including Pax7 and Myf5 and give rise to dystrophin-expressing myofibers upon transplantation in vivo. Notably, a subset of transplanted iMPCs maintain Pax7 expression and sustain serial regenerative responses. Similar to satellite cells, iMPCs originate from Pax7+ cells and require Pax7 itself for maintenance. Finally, we show that myogenic progenitor cell lines can be established from muscle tissue following small-molecule exposure alone. This study thus reports on a robust approach to derive expandable myogenic stem/progenitor-like cells from multiple cell types.


Sujet(s)
Reprogrammation cellulaire , Fibroblastes/cytologie , Muscles squelettiques/cytologie , Cellules souches/cytologie , Animaux , Marqueurs biologiques/métabolisme , Différenciation cellulaire/effets des médicaments et des substances chimiques , Auto-renouvellement cellulaire/effets des médicaments et des substances chimiques , Reprogrammation cellulaire/effets des médicaments et des substances chimiques , Fibroblastes/effets des médicaments et des substances chimiques , Souris , Développement musculaire/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/anatomopathologie , Dystrophie musculaire de l'animal/anatomopathologie , Protéine MyoD/métabolisme , Facteur de transcription PAX7/métabolisme , Régénération/effets des médicaments et des substances chimiques , Cellules satellites du muscle squelettique/métabolisme , Bibliothèques de petites molécules/pharmacologie , Niche de cellules souches/effets des médicaments et des substances chimiques , Transplantation de cellules souches , Cellules souches/effets des médicaments et des substances chimiques , Transgènes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...